gsd-2024-26706
Vulnerability from gsd
Modified
2024-02-20 06:02
Details
In the Linux kernel, the following vulnerability has been resolved: parisc: Fix random data corruption from exception handler The current exception handler implementation, which assists when accessing user space memory, may exhibit random data corruption if the compiler decides to use a different register than the specified register %r29 (defined in ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another register, the fault handler will nevertheless store -EFAULT into %r29 and thus trash whatever this register is used for. Looking at the assembly I found that this happens sometimes in emulate_ldd(). To solve the issue, the easiest solution would be if it somehow is possible to tell the fault handler which register is used to hold the error code. Using %0 or %1 in the inline assembly is not posssible as it will show up as e.g. %r29 (with the "%r" prefix), which the GNU assembler can not convert to an integer. This patch takes another, better and more flexible approach: We extend the __ex_table (which is out of the execution path) by one 32-word. In this word we tell the compiler to insert the assembler instruction "or %r0,%r0,%reg", where %reg references the register which the compiler choosed for the error return code. In case of an access failure, the fault handler finds the __ex_table entry and can examine the opcode. The used register is encoded in the lowest 5 bits, and the fault handler can then store -EFAULT into this register. Since we extend the __ex_table to 3 words we can't use the BUILDTIME_TABLE_SORT config option any longer.
Aliases



{
  "gsd": {
    "metadata": {
      "exploitCode": "unknown",
      "remediation": "unknown",
      "reportConfidence": "confirmed",
      "type": "vulnerability"
    },
    "osvSchema": {
      "aliases": [
        "CVE-2024-26706"
      ],
      "details": "In the Linux kernel, the following vulnerability has been resolved:\n\nparisc: Fix random data corruption from exception handler\n\nThe current exception handler implementation, which assists when accessing\nuser space memory, may exhibit random data corruption if the compiler decides\nto use a different register than the specified register %r29 (defined in\nASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another\nregister, the fault handler will nevertheless store -EFAULT into %r29 and thus\ntrash whatever this register is used for.\nLooking at the assembly I found that this happens sometimes in emulate_ldd().\n\nTo solve the issue, the easiest solution would be if it somehow is\npossible to tell the fault handler which register is used to hold the error\ncode. Using %0 or %1 in the inline assembly is not posssible as it will show\nup as e.g. %r29 (with the \"%r\" prefix), which the GNU assembler can not\nconvert to an integer.\n\nThis patch takes another, better and more flexible approach:\nWe extend the __ex_table (which is out of the execution path) by one 32-word.\nIn this word we tell the compiler to insert the assembler instruction\n\"or %r0,%r0,%reg\", where %reg references the register which the compiler\nchoosed for the error return code.\nIn case of an access failure, the fault handler finds the __ex_table entry and\ncan examine the opcode. The used register is encoded in the lowest 5 bits, and\nthe fault handler can then store -EFAULT into this register.\n\nSince we extend the __ex_table to 3 words we can\u0027t use the BUILDTIME_TABLE_SORT\nconfig option any longer.",
      "id": "GSD-2024-26706",
      "modified": "2024-02-20T06:02:29.132735Z",
      "schema_version": "1.4.0"
    }
  },
  "namespaces": {
    "cve.org": {
      "CVE_data_meta": {
        "ASSIGNER": "cve@kernel.org",
        "ID": "CVE-2024-26706",
        "STATE": "PUBLIC"
      },
      "affects": {
        "vendor": {
          "vendor_data": [
            {
              "product": {
                "product_data": [
                  {
                    "product_name": "Linux",
                    "version": {
                      "version_data": [
                        {
                          "version_affected": "\u003c",
                          "version_name": "1da177e4c3f4",
                          "version_value": "23027309b099"
                        },
                        {
                          "version_value": "not down converted",
                          "x_cve_json_5_version_data": {
                            "defaultStatus": "affected",
                            "versions": [
                              {
                                "lessThanOrEqual": "6.1.*",
                                "status": "unaffected",
                                "version": "6.1.79",
                                "versionType": "custom"
                              },
                              {
                                "lessThanOrEqual": "6.6.*",
                                "status": "unaffected",
                                "version": "6.6.18",
                                "versionType": "custom"
                              },
                              {
                                "lessThanOrEqual": "6.7.*",
                                "status": "unaffected",
                                "version": "6.7.6",
                                "versionType": "custom"
                              },
                              {
                                "lessThanOrEqual": "*",
                                "status": "unaffected",
                                "version": "6.8",
                                "versionType": "original_commit_for_fix"
                              }
                            ]
                          }
                        }
                      ]
                    }
                  }
                ]
              },
              "vendor_name": "Linux"
            }
          ]
        }
      },
      "data_format": "MITRE",
      "data_type": "CVE",
      "data_version": "4.0",
      "description": {
        "description_data": [
          {
            "lang": "eng",
            "value": "In the Linux kernel, the following vulnerability has been resolved:\n\nparisc: Fix random data corruption from exception handler\n\nThe current exception handler implementation, which assists when accessing\nuser space memory, may exhibit random data corruption if the compiler decides\nto use a different register than the specified register %r29 (defined in\nASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another\nregister, the fault handler will nevertheless store -EFAULT into %r29 and thus\ntrash whatever this register is used for.\nLooking at the assembly I found that this happens sometimes in emulate_ldd().\n\nTo solve the issue, the easiest solution would be if it somehow is\npossible to tell the fault handler which register is used to hold the error\ncode. Using %0 or %1 in the inline assembly is not posssible as it will show\nup as e.g. %r29 (with the \"%r\" prefix), which the GNU assembler can not\nconvert to an integer.\n\nThis patch takes another, better and more flexible approach:\nWe extend the __ex_table (which is out of the execution path) by one 32-word.\nIn this word we tell the compiler to insert the assembler instruction\n\"or %r0,%r0,%reg\", where %reg references the register which the compiler\nchoosed for the error return code.\nIn case of an access failure, the fault handler finds the __ex_table entry and\ncan examine the opcode. The used register is encoded in the lowest 5 bits, and\nthe fault handler can then store -EFAULT into this register.\n\nSince we extend the __ex_table to 3 words we can\u0027t use the BUILDTIME_TABLE_SORT\nconfig option any longer."
          }
        ]
      },
      "generator": {
        "engine": "bippy-d3b290d2becc"
      },
      "problemtype": {
        "problemtype_data": [
          {
            "description": [
              {
                "lang": "eng",
                "value": "n/a"
              }
            ]
          }
        ]
      },
      "references": {
        "reference_data": [
          {
            "name": "https://git.kernel.org/stable/c/23027309b099ffc4efca5477009a11dccbdae592",
            "refsource": "MISC",
            "url": "https://git.kernel.org/stable/c/23027309b099ffc4efca5477009a11dccbdae592"
          },
          {
            "name": "https://git.kernel.org/stable/c/fa69a8063f8b27f3c7434a0d4f464a76a62f24d2",
            "refsource": "MISC",
            "url": "https://git.kernel.org/stable/c/fa69a8063f8b27f3c7434a0d4f464a76a62f24d2"
          },
          {
            "name": "https://git.kernel.org/stable/c/ce31d79aa1f13a2345791f84935281a2c194e003",
            "refsource": "MISC",
            "url": "https://git.kernel.org/stable/c/ce31d79aa1f13a2345791f84935281a2c194e003"
          },
          {
            "name": "https://git.kernel.org/stable/c/8b1d72395635af45410b66cc4c4ab37a12c4a831",
            "refsource": "MISC",
            "url": "https://git.kernel.org/stable/c/8b1d72395635af45410b66cc4c4ab37a12c4a831"
          }
        ]
      }
    },
    "nvd.nist.gov": {
      "cve": {
        "descriptions": [
          {
            "lang": "en",
            "value": "In the Linux kernel, the following vulnerability has been resolved:\n\nparisc: Fix random data corruption from exception handler\n\nThe current exception handler implementation, which assists when accessing\nuser space memory, may exhibit random data corruption if the compiler decides\nto use a different register than the specified register %r29 (defined in\nASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another\nregister, the fault handler will nevertheless store -EFAULT into %r29 and thus\ntrash whatever this register is used for.\nLooking at the assembly I found that this happens sometimes in emulate_ldd().\n\nTo solve the issue, the easiest solution would be if it somehow is\npossible to tell the fault handler which register is used to hold the error\ncode. Using %0 or %1 in the inline assembly is not posssible as it will show\nup as e.g. %r29 (with the \"%r\" prefix), which the GNU assembler can not\nconvert to an integer.\n\nThis patch takes another, better and more flexible approach:\nWe extend the __ex_table (which is out of the execution path) by one 32-word.\nIn this word we tell the compiler to insert the assembler instruction\n\"or %r0,%r0,%reg\", where %reg references the register which the compiler\nchoosed for the error return code.\nIn case of an access failure, the fault handler finds the __ex_table entry and\ncan examine the opcode. The used register is encoded in the lowest 5 bits, and\nthe fault handler can then store -EFAULT into this register.\n\nSince we extend the __ex_table to 3 words we can\u0027t use the BUILDTIME_TABLE_SORT\nconfig option any longer."
          }
        ],
        "id": "CVE-2024-26706",
        "lastModified": "2024-04-03T17:24:18.150",
        "metrics": {},
        "published": "2024-04-03T15:15:53.293",
        "references": [
          {
            "source": "416baaa9-dc9f-4396-8d5f-8c081fb06d67",
            "url": "https://git.kernel.org/stable/c/23027309b099ffc4efca5477009a11dccbdae592"
          },
          {
            "source": "416baaa9-dc9f-4396-8d5f-8c081fb06d67",
            "url": "https://git.kernel.org/stable/c/8b1d72395635af45410b66cc4c4ab37a12c4a831"
          },
          {
            "source": "416baaa9-dc9f-4396-8d5f-8c081fb06d67",
            "url": "https://git.kernel.org/stable/c/ce31d79aa1f13a2345791f84935281a2c194e003"
          },
          {
            "source": "416baaa9-dc9f-4396-8d5f-8c081fb06d67",
            "url": "https://git.kernel.org/stable/c/fa69a8063f8b27f3c7434a0d4f464a76a62f24d2"
          }
        ],
        "sourceIdentifier": "416baaa9-dc9f-4396-8d5f-8c081fb06d67",
        "vulnStatus": "Awaiting Analysis"
      }
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.