CVE-2022-21732 (GCVE-0-2022-21732)

Vulnerability from cvelistv5 – Published: 2022-02-03 11:21 – Updated: 2025-02-12 15:58
VLAI?
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CWE
  • n/a
Assigner
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:36.139Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21732",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-01-31T17:14:02.977524Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-12T15:58:59.537Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:21:48.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135"
        }
      ],
      "source": {
        "advisory": "GHSA-c582-c96p-r5cq",
        "discovery": "UNKNOWN"
      },
      "title": "Memory exhaustion in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21732",
          "STATE": "PUBLIC",
          "TITLE": "Memory exhaustion in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c582-c96p-r5cq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21732",
    "datePublished": "2022-02-03T11:21:48.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-02-12T15:58:59.537Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndIncluding\": \"2.5.2\", \"matchCriteriaId\": \"688150BF-477C-48FC-9AEF-A79AC57A6DDC\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.6.0\", \"versionEndIncluding\": \"2.6.2\", \"matchCriteriaId\": \"C9E69B60-8C97-47E2-9027-9598B8392E5D\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*\", \"matchCriteriaId\": \"2EDFAAB8-799C-4259-9102-944D4760DA2C\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"}, {\"lang\": \"es\", \"value\": \"Tensorflow es un marco de aprendizaje autom\\u00e1tico de c\\u00f3digo abierto. La implementaci\\u00f3n de \\\"ThreadPoolHandle\\\" puede ser usada para desencadenar un ataque de denegaci\\u00f3n de servicio asignando demasiada memoria. Esto es debido a que el argumento \\\"num_threads\\\" s\\u00f3lo es comprobado que no sea negativo, pero no se presenta un l\\u00edmite superior en su valor. La correcci\\u00f3n ser\\u00e1 incluida en TensorFlow versi\\u00f3n 2.8.0. Tambi\\u00e9n seleccionaremos este commit en TensorFlow versi\\u00f3n 2.7.1, TensorFlow versi\\u00f3n 2.6.3, y TensorFlow versi\\u00f3n 2.5.3, ya que estos tambi\\u00e9n est\\u00e1n afectados y a\\u00fan est\\u00e1n en el rango admitido\"}]",
      "id": "CVE-2022-21732",
      "lastModified": "2024-11-21T06:45:19.790",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L\", \"baseScore\": 4.3, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"LOW\"}, \"exploitabilityScore\": 2.8, \"impactScore\": 1.4}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 6.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 2.8, \"impactScore\": 3.6}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:N/AC:L/Au:S/C:N/I:N/A:P\", \"baseScore\": 4.0, \"accessVector\": \"NETWORK\", \"accessComplexity\": \"LOW\", \"authentication\": \"SINGLE\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"MEDIUM\", \"exploitabilityScore\": 8.0, \"impactScore\": 2.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2022-02-03T12:15:07.933",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-770\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2022-21732\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2022-02-03T12:15:07.933\",\"lastModified\":\"2024-11-21T06:45:19.790\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \\\"ThreadPoolHandle\\\" puede ser usada para desencadenar un ataque de denegaci\u00f3n de servicio asignando demasiada memoria. Esto es debido a que el argumento \\\"num_threads\\\" s\u00f3lo es comprobado que no sea negativo, pero no se presenta un l\u00edmite superior en su valor. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":4.3,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":2.8,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":6.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:N/AC:L/Au:S/C:N/I:N/A:P\",\"baseScore\":4.0,\"accessVector\":\"NETWORK\",\"accessComplexity\":\"LOW\",\"authentication\":\"SINGLE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":8.0,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-770\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndIncluding\":\"2.5.2\",\"matchCriteriaId\":\"688150BF-477C-48FC-9AEF-A79AC57A6DDC\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.6.0\",\"versionEndIncluding\":\"2.6.2\",\"matchCriteriaId\":\"C9E69B60-8C97-47E2-9027-9598B8392E5D\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"2EDFAAB8-799C-4259-9102-944D4760DA2C\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]}]}}",
    "vulnrichment": {
      "containers": "{\"adp\": [{\"title\": \"CVE Program Container\", \"references\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq\", \"tags\": [\"x_refsource_CONFIRM\", \"x_transferred\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e\", \"tags\": [\"x_refsource_MISC\", \"x_transferred\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135\", \"tags\": [\"x_refsource_MISC\", \"x_transferred\"]}], \"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-03T02:53:36.139Z\"}}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2022-21732\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"none\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"partial\"}], \"version\": \"2.0.3\", \"timestamp\": \"2025-01-31T17:14:02.977524Z\"}}}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2025-02-12T15:58:55.045Z\"}}], \"cna\": {\"title\": \"Memory exhaustion in Tensorflow\", \"source\": {\"advisory\": \"GHSA-c582-c96p-r5cq\", \"discovery\": \"UNKNOWN\"}, \"metrics\": [{\"cvssV3_1\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 4.3, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"MEDIUM\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L\", \"integrityImpact\": \"NONE\", \"userInteraction\": \"NONE\", \"attackComplexity\": \"LOW\", \"availabilityImpact\": \"LOW\", \"privilegesRequired\": \"LOW\", \"confidentialityImpact\": \"NONE\"}}], \"affected\": [{\"vendor\": \"n/a\", \"product\": \"n/a\", \"versions\": [{\"status\": \"affected\", \"version\": \"n/a\"}]}], \"references\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq\", \"tags\": [\"x_refsource_CONFIRM\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e\", \"tags\": [\"x_refsource_MISC\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135\", \"tags\": [\"x_refsource_MISC\"]}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"text\", \"description\": \"n/a\"}]}], \"providerMetadata\": {\"orgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"shortName\": \"GitHub_M\", \"dateUpdated\": \"2022-02-03T11:21:48.000Z\"}, \"x_legacyV4Record\": {\"impact\": {\"cvss\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 4.3, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"MEDIUM\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L\", \"integrityImpact\": \"NONE\", \"userInteraction\": \"NONE\", \"attackComplexity\": \"LOW\", \"availabilityImpact\": \"LOW\", \"privilegesRequired\": \"LOW\", \"confidentialityImpact\": \"NONE\"}}, \"source\": {\"advisory\": \"GHSA-c582-c96p-r5cq\", \"discovery\": \"UNKNOWN\"}, \"affects\": {\"vendor\": {\"vendor_data\": [{\"product\": {\"product_data\": [{\"version\": {\"version_data\": [{\"version_value\": \"n/a\"}]}, \"product_name\": \"n/a\"}]}, \"vendor_name\": \"n/a\"}]}}, \"data_type\": \"CVE\", \"references\": {\"reference_data\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq\", \"name\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq\", \"refsource\": \"CONFIRM\"}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e\", \"name\": \"https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e\", \"refsource\": \"MISC\"}, {\"url\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135\", \"name\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135\", \"refsource\": \"MISC\"}]}, \"data_format\": \"MITRE\", \"description\": {\"description_data\": [{\"lang\": \"eng\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"}]}, \"problemtype\": {\"problemtype_data\": [{\"description\": [{\"lang\": \"eng\", \"value\": \"n/a\"}]}]}, \"data_version\": \"4.0\", \"CVE_data_meta\": {\"ID\": \"CVE-2022-21732\", \"STATE\": \"PUBLIC\", \"TITLE\": \"Memory exhaustion in Tensorflow\", \"ASSIGNER\": \"security-advisories@github.com\"}}}}",
      "cveMetadata": "{\"cveId\": \"CVE-2022-21732\", \"state\": \"PUBLISHED\", \"dateUpdated\": \"2025-02-12T15:58:59.537Z\", \"dateReserved\": \"2021-11-16T00:00:00.000Z\", \"assignerOrgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"datePublished\": \"2022-02-03T11:21:48.000Z\", \"assignerShortName\": \"GitHub_M\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…