CVE-2024-27133 (GCVE-0-2024-27133)

Vulnerability from cvelistv5 – Published: 2024-02-23 22:00 – Updated: 2024-08-22 18:01
VLAI?
Summary
Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset. This issue leads to a client-side RCE when running the recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over dataset table fields.
CWE
  • CWE-79 - Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
Assigner
Impacted products
Vendor Product Version
Affected: 0 , ≤ 2.9.2 (python)
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T00:27:59.107Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://research.jfrog.com/vulnerabilities/mlflow-untrusted-dataset-xss-jfsa-2024-000631932/"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/mlflow/mlflow/pull/10893"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThanOrEqual": "2.9.2",
                "status": "affected",
                "version": "0",
                "versionType": "custom"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-27133",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-02-27T15:45:19.756510Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-08-22T18:01:49.002Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "collectionURL": "https://pypi.org/project/pip",
          "packageName": "mlflow",
          "versions": [
            {
              "lessThanOrEqual": "2.9.2",
              "status": "affected",
              "version": "0",
              "versionType": "python"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset. This issue leads to a client-side RCE when running the recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over dataset table fields."
            }
          ],
          "value": "Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset. This issue leads to a client-side RCE when running the recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over dataset table fields."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-79",
              "description": "CWE-79 Improper Neutralization of Input During Web Page Generation (\u0027Cross-site Scripting\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-02-23T22:00:33.124Z",
        "orgId": "48a46f29-ae42-4e1d-90dd-c1676c1e5e6d",
        "shortName": "JFROG"
      },
      "references": [
        {
          "url": "https://research.jfrog.com/vulnerabilities/mlflow-untrusted-dataset-xss-jfsa-2024-000631932/"
        },
        {
          "url": "https://github.com/mlflow/mlflow/pull/10893"
        }
      ],
      "source": {
        "discovery": "EXTERNAL"
      },
      "title": "Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset."
    }
  },
  "cveMetadata": {
    "assignerOrgId": "48a46f29-ae42-4e1d-90dd-c1676c1e5e6d",
    "assignerShortName": "JFROG",
    "cveId": "CVE-2024-27133",
    "datePublished": "2024-02-23T22:00:33.124Z",
    "dateReserved": "2024-02-20T11:10:51.335Z",
    "dateUpdated": "2024-08-22T18:01:49.002Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "descriptions": "[{\"lang\": \"en\", \"value\": \"Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset. This issue leads to a client-side RCE when running the recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over dataset table fields.\"}, {\"lang\": \"es\", \"value\": \"Una sanitizaci\\u00f3n insuficiente en MLflow genera XSS cuando se ejecuta una receta que utiliza un conjunto de datos que no es de confianza. Este problema provoca un RCE del lado del cliente al ejecutar la receta en Jupyter Notebook. La vulnerabilidad se debe a la falta de saneamiento de los campos de la tabla del conjunto de datos.\"}]",
      "id": "CVE-2024-27133",
      "lastModified": "2024-11-21T09:03:55.143",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"reefs@jfrog.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H\", \"baseScore\": 7.5, \"baseSeverity\": \"HIGH\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"HIGH\", \"privilegesRequired\": \"NONE\", \"userInteraction\": \"REQUIRED\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.6, \"impactScore\": 5.9}]}",
      "published": "2024-02-23T22:15:55.287",
      "references": "[{\"url\": \"https://github.com/mlflow/mlflow/pull/10893\", \"source\": \"reefs@jfrog.com\"}, {\"url\": \"https://research.jfrog.com/vulnerabilities/mlflow-untrusted-dataset-xss-jfsa-2024-000631932/\", \"source\": \"reefs@jfrog.com\"}, {\"url\": \"https://github.com/mlflow/mlflow/pull/10893\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\"}, {\"url\": \"https://research.jfrog.com/vulnerabilities/mlflow-untrusted-dataset-xss-jfsa-2024-000631932/\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\"}]",
      "sourceIdentifier": "reefs@jfrog.com",
      "vulnStatus": "Awaiting Analysis",
      "weaknesses": "[{\"source\": \"reefs@jfrog.com\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-79\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2024-27133\",\"sourceIdentifier\":\"reefs@jfrog.com\",\"published\":\"2024-02-23T22:15:55.287\",\"lastModified\":\"2025-01-22T13:46:56.667\",\"vulnStatus\":\"Analyzed\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset. This issue leads to a client-side RCE when running the recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over dataset table fields.\"},{\"lang\":\"es\",\"value\":\"Una sanitizaci\u00f3n insuficiente en MLflow genera XSS cuando se ejecuta una receta que utiliza un conjunto de datos que no es de confianza. Este problema provoca un RCE del lado del cliente al ejecutar la receta en Jupyter Notebook. La vulnerabilidad se debe a la falta de saneamiento de los campos de la tabla del conjunto de datos.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"reefs@jfrog.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H\",\"baseScore\":7.5,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"REQUIRED\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.6,\"impactScore\":5.9},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H\",\"baseScore\":9.6,\"baseSeverity\":\"CRITICAL\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"REQUIRED\",\"scope\":\"CHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.8,\"impactScore\":6.0}]},\"weaknesses\":[{\"source\":\"reefs@jfrog.com\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-79\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*\",\"versionEndIncluding\":\"2.9.2\",\"matchCriteriaId\":\"0A9D223B-CF17-45F3-9C5E-BB31DA6C658F\"}]}]}],\"references\":[{\"url\":\"https://github.com/mlflow/mlflow/pull/10893\",\"source\":\"reefs@jfrog.com\",\"tags\":[\"Issue Tracking\",\"Patch\"]},{\"url\":\"https://research.jfrog.com/vulnerabilities/mlflow-untrusted-dataset-xss-jfsa-2024-000631932/\",\"source\":\"reefs@jfrog.com\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/mlflow/mlflow/pull/10893\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Issue Tracking\",\"Patch\"]},{\"url\":\"https://research.jfrog.com/vulnerabilities/mlflow-untrusted-dataset-xss-jfsa-2024-000631932/\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]}]}}",
    "vulnrichment": {
      "containers": "{\"adp\": [{\"title\": \"CVE Program Container\", \"references\": [{\"url\": \"https://research.jfrog.com/vulnerabilities/mlflow-untrusted-dataset-xss-jfsa-2024-000631932/\", \"tags\": [\"x_transferred\"]}, {\"url\": \"https://github.com/mlflow/mlflow/pull/10893\", \"tags\": [\"x_transferred\"]}], \"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-02T00:27:59.107Z\"}}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2024-27133\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"poc\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"partial\"}], \"version\": \"2.0.3\", \"timestamp\": \"2024-02-27T15:45:19.756510Z\"}}}], \"affected\": [{\"cpes\": [\"cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*\"], \"vendor\": \"lfprojects\", \"product\": \"mlflow\", \"versions\": [{\"status\": \"affected\", \"version\": \"0\", \"versionType\": \"custom\", \"lessThanOrEqual\": \"2.9.2\"}], \"defaultStatus\": \"unknown\"}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2024-08-22T18:01:43.326Z\"}}], \"cna\": {\"title\": \"Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset.\", \"source\": {\"discovery\": \"EXTERNAL\"}, \"metrics\": [{\"format\": \"CVSS\", \"cvssV3_1\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 7.5, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"HIGH\", \"vectorString\": \"CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H\", \"integrityImpact\": \"HIGH\", \"userInteraction\": \"REQUIRED\", \"attackComplexity\": \"HIGH\", \"availabilityImpact\": \"HIGH\", \"privilegesRequired\": \"NONE\", \"confidentialityImpact\": \"HIGH\"}, \"scenarios\": [{\"lang\": \"en\", \"value\": \"GENERAL\"}]}], \"affected\": [{\"versions\": [{\"status\": \"affected\", \"version\": \"0\", \"versionType\": \"python\", \"lessThanOrEqual\": \"2.9.2\"}], \"packageName\": \"mlflow\", \"collectionURL\": \"https://pypi.org/project/pip\"}], \"references\": [{\"url\": \"https://research.jfrog.com/vulnerabilities/mlflow-untrusted-dataset-xss-jfsa-2024-000631932/\"}, {\"url\": \"https://github.com/mlflow/mlflow/pull/10893\"}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset. This issue leads to a client-side RCE when running the recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over dataset table fields.\", \"supportingMedia\": [{\"type\": \"text/html\", \"value\": \"Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset. This issue leads to a client-side RCE when running the recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over dataset table fields.\", \"base64\": false}]}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"CWE\", \"cweId\": \"CWE-79\", \"description\": \"CWE-79 Improper Neutralization of Input During Web Page Generation (\u0027Cross-site Scripting\u0027)\"}]}], \"providerMetadata\": {\"orgId\": \"48a46f29-ae42-4e1d-90dd-c1676c1e5e6d\", \"shortName\": \"JFROG\", \"dateUpdated\": \"2024-02-23T22:00:33.124Z\"}}}",
      "cveMetadata": "{\"cveId\": \"CVE-2024-27133\", \"state\": \"PUBLISHED\", \"dateUpdated\": \"2024-08-22T18:01:49.002Z\", \"dateReserved\": \"2024-02-20T11:10:51.335Z\", \"assignerOrgId\": \"48a46f29-ae42-4e1d-90dd-c1676c1e5e6d\", \"datePublished\": \"2024-02-23T22:00:33.124Z\", \"assignerShortName\": \"JFROG\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…