CVE-2024-5206
Vulnerability from cvelistv5
Published
2024-06-06 18:28
Modified
2024-08-01 21:03
Severity ?
EPSS score ?
Summary
A sensitive data leakage vulnerability was identified in scikit-learn's TfidfVectorizer, specifically in versions up to and including 1.4.1.post1, which was fixed in version 1.5.0. The vulnerability arises from the unexpected storage of all tokens present in the training data within the `stop_words_` attribute, rather than only storing the subset of tokens required for the TF-IDF technique to function. This behavior leads to the potential leakage of sensitive information, as the `stop_words_` attribute could contain tokens that were meant to be discarded and not stored, such as passwords or keys. The impact of this vulnerability varies based on the nature of the data being processed by the vectorizer.
References
Impacted products
Vendor | Product | Version | |
---|---|---|---|
▼ | scikit-learn | scikit-learn/scikit-learn |
Version: unspecified < 1.5.0 |
|
{ "containers": { "adp": [ { "affected": [ { "cpes": [ "cpe:2.3:a:scikit-learn:scikit-learn:*:*:*:*:*:*:*:*" ], "defaultStatus": "unknown", "product": "scikit-learn", "vendor": "scikit-learn", "versions": [ { "lessThan": "1.5.0", "status": "affected", "version": "0", "versionType": "custom" } ] } ], "metrics": [ { "other": { "content": { "id": "CVE-2024-5206", "options": [ { "Exploitation": "poc" }, { "Automatable": "no" }, { "Technical Impact": "partial" } ], "role": "CISA Coordinator", "timestamp": "2024-06-07T15:11:02.549686Z", "version": "2.0.3" }, "type": "ssvc" } } ], "providerMetadata": { "dateUpdated": "2024-06-07T15:12:13.507Z", "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0", "shortName": "CISA-ADP" }, "title": "CISA ADP Vulnrichment" }, { "providerMetadata": { "dateUpdated": "2024-08-01T21:03:11.034Z", "orgId": "af854a3a-2127-422b-91ae-364da2661108", "shortName": "CVE" }, "references": [ { "tags": [ "x_transferred" ], "url": "https://huntr.com/bounties/14bc0917-a85b-4106-a170-d09d5191517c" }, { "tags": [ "x_transferred" ], "url": "https://github.com/scikit-learn/scikit-learn/commit/70ca21f106b603b611da73012c9ade7cd8e438b8" } ], "title": "CVE Program Container" } ], "cna": { "affected": [ { "product": "scikit-learn/scikit-learn", "vendor": "scikit-learn", "versions": [ { "lessThan": "1.5.0", "status": "affected", "version": "unspecified", "versionType": "custom" } ] } ], "descriptions": [ { "lang": "en", "value": "A sensitive data leakage vulnerability was identified in scikit-learn\u0027s TfidfVectorizer, specifically in versions up to and including 1.4.1.post1, which was fixed in version 1.5.0. The vulnerability arises from the unexpected storage of all tokens present in the training data within the `stop_words_` attribute, rather than only storing the subset of tokens required for the TF-IDF technique to function. This behavior leads to the potential leakage of sensitive information, as the `stop_words_` attribute could contain tokens that were meant to be discarded and not stored, such as passwords or keys. The impact of this vulnerability varies based on the nature of the data being processed by the vectorizer." } ], "metrics": [ { "cvssV3_0": { "attackComplexity": "HIGH", "attackVector": "LOCAL", "availabilityImpact": "NONE", "baseScore": 4.7, "baseSeverity": "MEDIUM", "confidentialityImpact": "HIGH", "integrityImpact": "NONE", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N", "version": "3.0" } } ], "problemTypes": [ { "descriptions": [ { "cweId": "CWE-921", "description": "CWE-921 Storage of Sensitive Data in a Mechanism without Access Control", "lang": "en", "type": "CWE" } ] } ], "providerMetadata": { "dateUpdated": "2024-06-17T18:56:36.616Z", "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a", "shortName": "@huntr_ai" }, "references": [ { "url": "https://huntr.com/bounties/14bc0917-a85b-4106-a170-d09d5191517c" }, { "url": "https://github.com/scikit-learn/scikit-learn/commit/70ca21f106b603b611da73012c9ade7cd8e438b8" } ], "source": { "advisory": "14bc0917-a85b-4106-a170-d09d5191517c", "discovery": "EXTERNAL" }, "title": "Sensitive Data Leakage in sklearn.feature_extraction.text.TfidfVectorizer in scikit-learn/scikit-learn" } }, "cveMetadata": { "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a", "assignerShortName": "@huntr_ai", "cveId": "CVE-2024-5206", "datePublished": "2024-06-06T18:28:14.267Z", "dateReserved": "2024-05-22T15:52:49.284Z", "dateUpdated": "2024-08-01T21:03:11.034Z", "state": "PUBLISHED" }, "dataType": "CVE_RECORD", "dataVersion": "5.1", "vulnerability-lookup:meta": { "nvd": "{\"cve\":{\"id\":\"CVE-2024-5206\",\"sourceIdentifier\":\"security@huntr.dev\",\"published\":\"2024-06-06T19:16:06.363\",\"lastModified\":\"2024-11-21T09:47:11.143\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"A sensitive data leakage vulnerability was identified in scikit-learn\u0027s TfidfVectorizer, specifically in versions up to and including 1.4.1.post1, which was fixed in version 1.5.0. The vulnerability arises from the unexpected storage of all tokens present in the training data within the `stop_words_` attribute, rather than only storing the subset of tokens required for the TF-IDF technique to function. This behavior leads to the potential leakage of sensitive information, as the `stop_words_` attribute could contain tokens that were meant to be discarded and not stored, such as passwords or keys. The impact of this vulnerability varies based on the nature of the data being processed by the vectorizer.\"},{\"lang\":\"es\",\"value\":\"Se identific\u00f3 una vulnerabilidad de fuga de datos confidenciales en TfidfVectorizer de scikit-learn, espec\u00edficamente en versiones hasta la 1.4.1.post1 incluida, que se solucion\u00f3 en la versi\u00f3n 1.5.0. La vulnerabilidad surge del almacenamiento inesperado de todos los tokens presentes en los datos de entrenamiento dentro del atributo `stop_words_`, en lugar de almacenar solo el subconjunto de tokens necesarios para que funcione la t\u00e9cnica TF-IDF. Este comportamiento conduce a una posible fuga de informaci\u00f3n confidencial, ya que el atributo `stop_words_` podr\u00eda contener tokens que deb\u00edan descartarse y no almacenarse, como contrase\u00f1as o claves. El impacto de esta vulnerabilidad var\u00eda seg\u00fan la naturaleza de los datos que procesa el vectorizador.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N\",\"baseScore\":4.7,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"NONE\"},\"exploitabilityScore\":1.0,\"impactScore\":3.6}],\"cvssMetricV30\":[{\"source\":\"security@huntr.dev\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.0\",\"vectorString\":\"CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N\",\"baseScore\":4.7,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"NONE\"},\"exploitabilityScore\":1.0,\"impactScore\":3.6}]},\"weaknesses\":[{\"source\":\"security@huntr.dev\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-921\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-922\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:scikit-learn:scikit-learn:*:*:*:*:*:python:*:*\",\"versionEndExcluding\":\"1.5.0\",\"matchCriteriaId\":\"C27C3BF2-FC82-4EC8-908F-61EB93677AC1\"}]}]}],\"references\":[{\"url\":\"https://github.com/scikit-learn/scikit-learn/commit/70ca21f106b603b611da73012c9ade7cd8e438b8\",\"source\":\"security@huntr.dev\",\"tags\":[\"Patch\"]},{\"url\":\"https://huntr.com/bounties/14bc0917-a85b-4106-a170-d09d5191517c\",\"source\":\"security@huntr.dev\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/scikit-learn/scikit-learn/commit/70ca21f106b603b611da73012c9ade7cd8e438b8\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\"]},{\"url\":\"https://huntr.com/bounties/14bc0917-a85b-4106-a170-d09d5191517c\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]}]}}" } }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.