GHSA-2XGJ-XHGF-GGJV
Vulnerability from github – Published: 2021-05-21 14:28 – Updated: 2024-11-13 16:02Impact
An attacker can trigger a heap buffer overflow in Eigen implementation of tf.raw_ops.BandedTriangularSolve:
import tensorflow as tf
import numpy as np
matrix_array = np.array([])
matrix_tensor = tf.convert_to_tensor(np.reshape(matrix_array,(0,1)),dtype=tf.float32)
rhs_array = np.array([1,1])
rhs_tensor = tf.convert_to_tensor(np.reshape(rhs_array,(1,2)),dtype=tf.float32)
tf.raw_ops.BandedTriangularSolve(matrix=matrix_tensor,rhs=rhs_tensor)
The implementation calls ValidateInputTensors for input validation but fails to validate that the two tensors are not empty:
void ValidateInputTensors(OpKernelContext* ctx, const Tensor& in0, const Tensor& in1) {
OP_REQUIRES(
ctx, in0.dims() >= 2,
errors::InvalidArgument("In[0] ndims must be >= 2: ", in0.dims()));
OP_REQUIRES(
ctx, in1.dims() >= 2,
errors::InvalidArgument("In[1] ndims must be >= 2: ", in1.dims()));
}
Furthermore, since OP_REQUIRES macro only stops execution of current function after setting ctx->status() to a non-OK value, callers of helper functions that use OP_REQUIRES must check value of ctx->status() before continuing. This doesn't happen in this op's implementation, hence the validation that is present is also not effective.
Patches
We have patched the issue in GitHub commit ba6822bd7b7324ba201a28b2f278c29a98edbef2 followed by GitHub commit 0ab290774f91a23bebe30a358fde4e53ab4876a0.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Ye Zhang and Yakun Zhang of Baidu X-Team.
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
}
],
"aliases": [
"CVE-2021-29612"
],
"database_specific": {
"cwe_ids": [
"CWE-120",
"CWE-787"
],
"github_reviewed": true,
"github_reviewed_at": "2021-05-17T21:56:29Z",
"nvd_published_at": "2021-05-14T20:15:00Z",
"severity": "LOW"
},
"details": "### Impact\nAn attacker can trigger a heap buffer overflow in Eigen implementation of `tf.raw_ops.BandedTriangularSolve`:\n\n```python\nimport tensorflow as tf\nimport numpy as np\n \nmatrix_array = np.array([])\nmatrix_tensor = tf.convert_to_tensor(np.reshape(matrix_array,(0,1)),dtype=tf.float32)\nrhs_array = np.array([1,1])\nrhs_tensor = tf.convert_to_tensor(np.reshape(rhs_array,(1,2)),dtype=tf.float32)\ntf.raw_ops.BandedTriangularSolve(matrix=matrix_tensor,rhs=rhs_tensor)\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) calls `ValidateInputTensors` for input validation but fails to validate that the two tensors are not empty:\n \n```cc\nvoid ValidateInputTensors(OpKernelContext* ctx, const Tensor\u0026 in0, const Tensor\u0026 in1) {\n OP_REQUIRES(\n ctx, in0.dims() \u003e= 2, \n errors::InvalidArgument(\"In[0] ndims must be \u003e= 2: \", in0.dims()));\n\n OP_REQUIRES(\n ctx, in1.dims() \u003e= 2,\n errors::InvalidArgument(\"In[1] ndims must be \u003e= 2: \", in1.dims()));\n}\n``` \n\nFurthermore, since `OP_REQUIRES` macro only stops execution of current function after setting `ctx-\u003estatus()` to a non-OK value, callers of helper functions that use `OP_REQUIRES` must check value of `ctx-\u003estatus()` before continuing. This doesn\u0027t happen [in this op\u0027s implementation](https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), hence the validation that is present is also not effective.\n\n### Patches\nWe have patched the issue in GitHub commit [ba6822bd7b7324ba201a28b2f278c29a98edbef2](https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2) followed by GitHub commit [0ab290774f91a23bebe30a358fde4e53ab4876a0](https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Ye Zhang and Yakun Zhang of Baidu X-Team.",
"id": "GHSA-2xgj-xhgf-ggjv",
"modified": "2024-11-13T16:02:19Z",
"published": "2021-05-21T14:28:37Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2xgj-xhgf-ggjv"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29612"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-540.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-738.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-249.yaml"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:L/VA:L/SC:N/SI:N/SA:N",
"type": "CVSS_V4"
}
],
"summary": "Heap buffer overflow in `BandedTriangularSolve`"
}
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.