GHSA-7R94-XV9V-63JW

Vulnerability from github – Published: 2021-11-10 18:44 – Updated: 2024-11-13 22:05
VLAI?
Summary
A use of uninitialized value vulnerability in Tensorflow
Details

Impact

TensorFlow's Grappler optimizer has a use of unitialized variable:

  const NodeDef* dequeue_node;
  for (const auto& train_node : train_nodes) {
    if (IsDequeueOp(*train_node)) {
      dequeue_node = train_node;
      break;
    }
  }

  if (dequeue_node) {
    ...
  }

If the train_nodes vector (obtained from the saved model that gets optimized) does not contain a Dequeue node, then dequeue_node is left unitialized.

Patches

We have patched the issue in GitHub commit 68867bf01239d9e1048f98cbad185bf4761bedd3.

The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Qian Feng from Baidu Security Team.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.4.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.4.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.4.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-41225"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-908"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-11-08T21:53:17Z",
    "nvd_published_at": "2021-11-05T23:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nTensorFlow\u0027s Grappler optimizer has a [use of unitialized variable](https://github.com/tensorflow/tensorflow/blob/3457a2b122e50b4d44ceaaed5a663d635e5c22df/tensorflow/core/grappler/optimizers/auto_parallel.cc#L155-L164):\n\n```cc\n  const NodeDef* dequeue_node;\n  for (const auto\u0026 train_node : train_nodes) {\n    if (IsDequeueOp(*train_node)) {\n      dequeue_node = train_node;\n      break;\n    }\n  }\n\n  if (dequeue_node) {\n    ...\n  }\n```\n\nIf the `train_nodes` vector (obtained from the saved model that gets optimized) does not contain a `Dequeue` node, then `dequeue_node` is left unitialized.\n\n### Patches\nWe have patched the issue in GitHub commit [68867bf01239d9e1048f98cbad185bf4761bedd3](https://github.com/tensorflow/tensorflow/commit/68867bf01239d9e1048f98cbad185bf4761bedd3).\n\nThe fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Qian Feng from Baidu Security Team.\n",
  "id": "GHSA-7r94-xv9v-63jw",
  "modified": "2024-11-13T22:05:06Z",
  "published": "2021-11-10T18:44:11Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7r94-xv9v-63jw"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-41225"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/68867bf01239d9e1048f98cbad185bf4761bedd3"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-634.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-832.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-417.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "A use of uninitialized value vulnerability in Tensorflow"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…