GHSA-R4PJ-74MG-8868

Vulnerability from github – Published: 2021-05-21 14:21 – Updated: 2024-10-30 23:16
VLAI?
Summary
Division by 0 in `Conv2DBackpropFilter`
Details

Impact

An attacker can trigger a division by 0 in tf.raw_ops.Conv2DBackpropFilter:

import tensorflow as tf

input_tensor = tf.constant([], shape=[0, 0, 1, 0], dtype=tf.float32)
filter_sizes = tf.constant([1, 1, 1, 1], shape=[4], dtype=tf.int32)
out_backprop = tf.constant([], shape=[0, 0, 1, 1], dtype=tf.float32)

tf.raw_ops.Conv2DBackpropFilter(input=input_tensor, filter_sizes=filter_sizes,
                                out_backprop=out_backprop,
                                strides=[1, 66, 18, 1], use_cudnn_on_gpu=True,
                                padding='SAME', explicit_paddings=[],
                                data_format='NHWC', dilations=[1, 1, 1, 1])

This is because the implementation does a modulus operation where the divisor is controlled by the caller:

  if (dims->in_depth % filter_shape.dim_size(num_dims - 2)) { ... }

Patches

We have patched the issue in GitHub commit fca9874a9b42a2134f907d2fb46ab774a831404a.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29524"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-369"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T23:19:06Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nAn attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropFilter`:\n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([], shape=[0, 0, 1, 0], dtype=tf.float32)\nfilter_sizes = tf.constant([1, 1, 1, 1], shape=[4], dtype=tf.int32)\nout_backprop = tf.constant([], shape=[0, 0, 1, 1], dtype=tf.float32)\n\ntf.raw_ops.Conv2DBackpropFilter(input=input_tensor, filter_sizes=filter_sizes,\n                                out_backprop=out_backprop,\n                                strides=[1, 66, 18, 1], use_cudnn_on_gpu=True,\n                                padding=\u0027SAME\u0027, explicit_paddings=[],\n                                data_format=\u0027NHWC\u0027, dilations=[1, 1, 1, 1])\n```                 \n                    \nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) does a modulus operation where the divisor is controlled by the caller:\n\n```cc \n  if (dims-\u003ein_depth % filter_shape.dim_size(num_dims - 2)) { ... }\n```\n    \n### Patches\nWe have patched the issue in GitHub commit [fca9874a9b42a2134f907d2fb46ab774a831404a](https://github.com/tensorflow/tensorflow/commit/fca9874a9b42a2134f907d2fb46ab774a831404a).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n  \n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.",
  "id": "GHSA-r4pj-74mg-8868",
  "modified": "2024-10-30T23:16:52Z",
  "published": "2021-05-21T14:21:47Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4pj-74mg-8868"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29524"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/fca9874a9b42a2134f907d2fb46ab774a831404a"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-452.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-650.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-161.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Division by 0 in `Conv2DBackpropFilter`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…