GHSA-XCWJ-WFCM-M23C
Vulnerability from github – Published: 2021-05-21 14:22 – Updated: 2024-10-30 23:19Impact
An attacker can trigger a null pointer dereference by providing an invalid permutation to tf.raw_ops.SparseMatrixSparseCholesky:
import tensorflow as tf
import numpy as np
from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops
indices_array = np.array([[0, 0]])
value_array = np.array([-10.0], dtype=np.float32)
dense_shape = [1, 1]
st = tf.SparseTensor(indices_array, value_array, dense_shape)
input = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
st.indices, st.values, st.dense_shape)
permutation = tf.constant([], shape=[1, 0], dtype=tf.int32)
tf.raw_ops.SparseMatrixSparseCholesky(input=input, permutation=permutation, type=tf.float32)
This is because the implementation fails to properly validate the input arguments:
void Compute(OpKernelContext* ctx) final {
...
const Tensor& input_permutation_indices = ctx->input(1);
...
ValidateInputs(ctx, *input_matrix, input_permutation_indices, &batch_size, &num_rows);
...
}
void ValidateInputs(OpKernelContext* ctx,
const CSRSparseMatrix& sparse_matrix,
const Tensor& permutation_indices, int* batch_size,
int64* num_rows) {
OP_REQUIRES(ctx, sparse_matrix.dtype() == DataTypeToEnum<T>::value, ...)
...
}
Although ValidateInputs is called and there are checks in the body of this function, the code proceeds to the next line in ValidateInputs since OP_REQUIRES is a macro that only exits the current function.
#define OP_REQUIRES(CTX, EXP, STATUS) \
do { \
if (!TF_PREDICT_TRUE(EXP)) { \
CheckNotInComputeAsync((CTX), "OP_REQUIRES_ASYNC"); \
(CTX)->CtxFailure(__FILE__, __LINE__, (STATUS)); \
return; \
} \
} while (0)
Thus, the first validation condition that fails in ValidateInputs will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check context->status() or to convert ValidateInputs to return a Status.
Patches
We have patched the issue in GitHub commit e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
}
],
"aliases": [
"CVE-2021-29530"
],
"database_specific": {
"cwe_ids": [
"CWE-476"
],
"github_reviewed": true,
"github_reviewed_at": "2021-05-18T23:03:26Z",
"nvd_published_at": "2021-05-14T20:15:00Z",
"severity": "LOW"
},
"details": "### Impact\nAn attacker can trigger a null pointer dereference by providing an invalid `permutation` to `tf.raw_ops.SparseMatrixSparseCholesky`:\n\n```python\nimport tensorflow as tf\nimport numpy as np\nfrom tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops\n\nindices_array = np.array([[0, 0]])\nvalue_array = np.array([-10.0], dtype=np.float32)\ndense_shape = [1, 1]\nst = tf.SparseTensor(indices_array, value_array, dense_shape)\n\ninput = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(\n st.indices, st.values, st.dense_shape)\n\npermutation = tf.constant([], shape=[1, 0], dtype=tf.int32)\n \ntf.raw_ops.SparseMatrixSparseCholesky(input=input, permutation=permutation, type=tf.float32)\n```\n\nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) fails to properly validate the input arguments: \n \n```cc \nvoid Compute(OpKernelContext* ctx) final {\n ...\n const Tensor\u0026 input_permutation_indices = ctx-\u003einput(1);\n ...\n ValidateInputs(ctx, *input_matrix, input_permutation_indices, \u0026batch_size, \u0026num_rows);\n ...\n}\n\nvoid ValidateInputs(OpKernelContext* ctx,\n const CSRSparseMatrix\u0026 sparse_matrix,\n const Tensor\u0026 permutation_indices, int* batch_size,\n int64* num_rows) {\n OP_REQUIRES(ctx, sparse_matrix.dtype() == DataTypeToEnum\u003cT\u003e::value, ...)\n ...\n}\n```\nAlthough `ValidateInputs` is called and there are checks in the body of this function, the code proceeds to the next line in `ValidateInputs` since [`OP_REQUIRES`](https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/framework/op_requires.h#L41-L48) is a macro that only exits the current function.\n\n```cc\n#define OP_REQUIRES(CTX, EXP, STATUS) \\\n do { \\\n if (!TF_PREDICT_TRUE(EXP)) { \\\n CheckNotInComputeAsync((CTX), \"OP_REQUIRES_ASYNC\"); \\\n (CTX)-\u003eCtxFailure(__FILE__, __LINE__, (STATUS)); \\\n return; \\\n } \\\n } while (0)\n```\n\nThus, the first validation condition that fails in `ValidateInputs` will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check `context-\u003estatus()` or to convert `ValidateInputs` to return a `Status`.\n\n### Patches\nWe have patched the issue in GitHub commit [e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd](https://github.com/tensorflow/tensorflow/commit/e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.",
"id": "GHSA-xcwj-wfcm-m23c",
"modified": "2024-10-30T23:19:46Z",
"published": "2021-05-21T14:22:09Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xcwj-wfcm-m23c"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29530"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-458.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-656.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-167.yaml"
},
{
"type": "PACKAGE",
"url": "https://github.com/tensorflow/tensorflow"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
"type": "CVSS_V4"
}
],
"summary": "Invalid validation in `SparseMatrixSparseCholesky`"
}
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.