CVE-2020-15196 (GCVE-0-2020-15196)

Vulnerability from cvelistv5 – Published: 2020-09-25 18:40 – Updated: 2024-08-04 13:08
VLAI?
Title
Heap buffer overflow in Tensorflow
Summary
In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don't validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
CWE
  • CWE-119 - {"CWE-119":"Improper Restriction of Operations within the Bounds of a Memory Buffer"}
  • CWE-122 - {"CWE-122":"Heap-based Buffer Overflow"}
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: = 2.3.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.710Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don\u0027t validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:40:36",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph"
        }
      ],
      "source": {
        "advisory": "GHSA-pg59-2f92-5cph",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15196",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don\u0027t validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pg59-2f92-5cph",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15196",
    "datePublished": "2020-09-25T18:40:36",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.710Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*\", \"matchCriteriaId\": \"D0A7B69E-9388-48F0-B744-49453EBAF5D5\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don\u0027t validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.\"}, {\"lang\": \"es\", \"value\": \"En Tensorflow versi\\u00f3n 2.3.0, las implementaciones de \\\"SparseCountSparseOutput\\\" y \\\"RaggedCountSparseOutput\\\" no comprueban que el tensor \\\"weights\\\" tenga la misma forma que los datos.\u0026#xa0;La comprobaci\\u00f3n existe para \\\"DenseCountSparseOutput\\\", donde ambos tensores est\\u00e1n completamente especificados.\u0026#xa0;En el recuento escaso y desigual, todav\\u00eda se accede a los pesos en paralelo con los datos.\u0026#xa0;Pero, dado que no existe comprobaci\\u00f3n, un usuario que pase menos pesos que valores para los tensores puede generar una lectura desde fuera de los l\\u00edmites del b\\u00fafer de pila asignado para los pesos.\u0026#xa0;El problema es parcheado en el commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 y es publicado en TensorFlow versi\\u00f3n 2.3.1\"}]",
      "id": "CVE-2020-15196",
      "lastModified": "2024-11-21T05:05:03.503",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H\", \"baseScore\": 8.5, \"baseSeverity\": \"HIGH\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"CHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 6.0}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H\", \"baseScore\": 9.9, \"baseSeverity\": \"CRITICAL\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"CHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 3.1, \"impactScore\": 6.0}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:N/AC:L/Au:S/C:P/I:P/A:P\", \"baseScore\": 6.5, \"accessVector\": \"NETWORK\", \"accessComplexity\": \"LOW\", \"authentication\": \"SINGLE\", \"confidentialityImpact\": \"PARTIAL\", \"integrityImpact\": \"PARTIAL\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"MEDIUM\", \"exploitabilityScore\": 8.0, \"impactScore\": 6.4, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2020-09-25T19:15:14.870",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-119\"}, {\"lang\": \"en\", \"value\": \"CWE-122\"}]}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-125\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2020-15196\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2020-09-25T19:15:14.870\",\"lastModified\":\"2024-11-21T05:05:03.503\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don\u0027t validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.\"},{\"lang\":\"es\",\"value\":\"En Tensorflow versi\u00f3n 2.3.0, las implementaciones de \\\"SparseCountSparseOutput\\\" y \\\"RaggedCountSparseOutput\\\" no comprueban que el tensor \\\"weights\\\" tenga la misma forma que los datos.\u0026#xa0;La comprobaci\u00f3n existe para \\\"DenseCountSparseOutput\\\", donde ambos tensores est\u00e1n completamente especificados.\u0026#xa0;En el recuento escaso y desigual, todav\u00eda se accede a los pesos en paralelo con los datos.\u0026#xa0;Pero, dado que no existe comprobaci\u00f3n, un usuario que pase menos pesos que valores para los tensores puede generar una lectura desde fuera de los l\u00edmites del b\u00fafer de pila asignado para los pesos.\u0026#xa0;El problema es parcheado en el commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 y es publicado en TensorFlow versi\u00f3n 2.3.1\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H\",\"baseScore\":8.5,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"CHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":6.0},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H\",\"baseScore\":9.9,\"baseSeverity\":\"CRITICAL\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"CHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":3.1,\"impactScore\":6.0}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:N/AC:L/Au:S/C:P/I:P/A:P\",\"baseScore\":6.5,\"accessVector\":\"NETWORK\",\"accessComplexity\":\"LOW\",\"authentication\":\"SINGLE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":8.0,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-119\"},{\"lang\":\"en\",\"value\":\"CWE-122\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-125\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*\",\"matchCriteriaId\":\"D0A7B69E-9388-48F0-B744-49453EBAF5D5\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…