CVE-2020-26266 (GCVE-0-2020-26266)

Vulnerability from cvelistv5 – Published: 2020-12-10 22:10 – Updated: 2024-08-04 15:56
VLAI?
Summary
In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
CWE
  • CWE-908 - Use of Uninitialized Resource
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: < 1.15.5
Affected: >= 2.0.0, < 2.0.4
Affected: >= 2.1.0, < 2.1.3
Affected: >= 2.2.0, < 2.2.2
Affected: >= 2.3.0, < 2.3.2
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:04.617Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.5"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:47",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
        }
      ],
      "source": {
        "advisory": "GHSA-qhxx-j73r-qpm2",
        "discovery": "UNKNOWN"
      },
      "title": "Uninitialized memory access in Eigen types in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26266",
          "STATE": "PUBLIC",
          "TITLE": "Uninitialized memory access in Eigen types in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.5"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.4"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.3"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.2"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qhxx-j73r-qpm2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26266",
    "datePublished": "2020-12-10T22:10:47",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:04.617Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndExcluding\": \"1.15.5\", \"matchCriteriaId\": \"CA3A54AC-E0F8-4741-8A80-04EEF746B14B\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.0.0\", \"versionEndExcluding\": \"2.0.4\", \"matchCriteriaId\": \"989E4548-7823-436F-A9FE-04158ED41C48\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.1.0\", \"versionEndExcluding\": \"2.1.3\", \"matchCriteriaId\": \"46417CA8-E666-4E12-B2A8-BB0E97D49BF4\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.2.0\", \"versionEndExcluding\": \"2.2.2\", \"matchCriteriaId\": \"57B24744-0D81-41E9-9ED0-7296368DEF00\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.3.0\", \"versionEndExcluding\": \"2.3.2\", \"matchCriteriaId\": \"DBEA56AF-3495-4883-9721-0FA9F08E7F6D\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.\"}, {\"lang\": \"es\", \"value\": \"En las versiones afectadas de TensorFlow, en determinados casos, un modelo guardado puede activar el uso de valores no inicializados durante la ejecuci\\u00f3n del c\\u00f3digo.\u0026#xa0;Esto es debido a que los b\\u00faferes de tensor se llenan con el valor predeterminado del tipo, pero se olvidan de inicializar por defecto los tipos de punto flotante cuantificados en Eigen.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0.\"}]",
      "id": "CVE-2020-26266",
      "lastModified": "2024-11-21T05:19:42.273",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L\", \"baseScore\": 4.4, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"LOW\", \"availabilityImpact\": \"LOW\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 2.5}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L\", \"baseScore\": 5.3, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"LOW\", \"integrityImpact\": \"LOW\", \"availabilityImpact\": \"LOW\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.4}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:L/AC:L/Au:N/C:P/I:P/A:P\", \"baseScore\": 4.6, \"accessVector\": \"LOCAL\", \"accessComplexity\": \"LOW\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"PARTIAL\", \"integrityImpact\": \"PARTIAL\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"MEDIUM\", \"exploitabilityScore\": 3.9, \"impactScore\": 6.4, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2020-12-10T23:15:12.647",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-908\"}]}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-908\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2020-26266\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2020-12-10T23:15:12.647\",\"lastModified\":\"2024-11-21T05:19:42.273\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.\"},{\"lang\":\"es\",\"value\":\"En las versiones afectadas de TensorFlow, en determinados casos, un modelo guardado puede activar el uso de valores no inicializados durante la ejecuci\u00f3n del c\u00f3digo.\u0026#xa0;Esto es debido a que los b\u00faferes de tensor se llenan con el valor predeterminado del tipo, pero se olvidan de inicializar por defecto los tipos de punto flotante cuantificados en Eigen.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L\",\"baseScore\":4.4,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.8,\"impactScore\":2.5},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L\",\"baseScore\":5.3,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.8,\"impactScore\":3.4}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:P/I:P/A:P\",\"baseScore\":4.6,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":3.9,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-908\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-908\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"1.15.5\",\"matchCriteriaId\":\"CA3A54AC-E0F8-4741-8A80-04EEF746B14B\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.0.0\",\"versionEndExcluding\":\"2.0.4\",\"matchCriteriaId\":\"989E4548-7823-436F-A9FE-04158ED41C48\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.1.0\",\"versionEndExcluding\":\"2.1.3\",\"matchCriteriaId\":\"46417CA8-E666-4E12-B2A8-BB0E97D49BF4\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.2\",\"matchCriteriaId\":\"57B24744-0D81-41E9-9ED0-7296368DEF00\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.2\",\"matchCriteriaId\":\"DBEA56AF-3495-4883-9721-0FA9F08E7F6D\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…