CVE-2021-37677 (GCVE-0-2021-37677)

Vulnerability from cvelistv5 – Published: 2021-08-12 22:35 – Updated: 2024-08-04 01:23
VLAI?
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CWE
  • CWE-20 - Improper Input Validation
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: >= 2.5.0, < 2.5.1
Affected: >= 2.4.0, < 2.4.3
Affected: < 2.3.4
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.450Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:35:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764"
        }
      ],
      "source": {
        "advisory": "GHSA-qfpc-5pjr-mh26",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation in shape inference for `Dequantize` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37677",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation in shape inference for `Dequantize` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qfpc-5pjr-mh26",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37677",
    "datePublished": "2021-08-12T22:35:10",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.450Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.3.0\", \"versionEndExcluding\": \"2.3.4\", \"matchCriteriaId\": \"0F83C081-51CC-415F-A8C0-0A44C75E2CD6\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.4.0\", \"versionEndExcluding\": \"2.4.3\", \"matchCriteriaId\": \"BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*\", \"matchCriteriaId\": \"D03E99A7-4E3D-427D-A156-C0713E9FB02A\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*\", \"matchCriteriaId\": \"70FA6E48-6C57-40CA-809F-4E3D07CBF348\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*\", \"matchCriteriaId\": \"42187561-E491-434D-828C-F36701446634\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*\", \"matchCriteriaId\": \"C66B61C8-450A-4C5E-9174-F970D6DEE778\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\"}, {\"lang\": \"es\", \"value\": \"TensorFlow es una plataforma de c\\u00f3digo abierto de extremo a extremo para el aprendizaje autom\\u00e1tico.\u0026#xa0;En las versiones afectadas, el c\\u00f3digo de inferencia de forma para \\\"tf.raw_ops.Dequantize\\\" presenta una vulnerabilidad que podr\\u00eda desencadenar una denegaci\\u00f3n de servicio por medio de un error de seguridad si un atacante proporciona argumentos no v\\u00e1lidos.\u0026#xa0;La inferencia de forma [implementaci\\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) usa \\\"axis\\\" para seleccionar entre dos valores diferentes para \\\"minmax_rank \\\"que luego se usa para recuperar las dimensiones del tensor.\u0026#xa0;Sin embargo, el c\\u00f3digo asume que el \\\"axis\\\" puede ser \\\"-1\\\" o un valor mayor que \\\"-1\\\", sin comprobaci\\u00f3n para los otros valores.\u0026#xa0;Hemos solucionado el problema en GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764.\u0026#xa0;La correcci\\u00f3n ser\\u00e1 incluida en TensorFlow versi\\u00f3n 2.6.0.\u0026#xa0;Tambi\\u00e9n seleccionaremos este commit en TensorFlow versi\\u00f3n 2.5.\"}]",
      "id": "CVE-2021-37677",
      "lastModified": "2024-11-21T06:15:40.763",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 5.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.6}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 5.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.6}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:L/AC:L/Au:N/C:N/I:N/A:P\", \"baseScore\": 2.1, \"accessVector\": \"LOCAL\", \"accessComplexity\": \"LOW\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"LOW\", \"exploitabilityScore\": 3.9, \"impactScore\": 2.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2021-08-12T23:15:08.090",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Vendor Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Vendor Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-20\"}]}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-1284\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2021-37677\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-08-12T23:15:08.090\",\"lastModified\":\"2024-11-21T06:15:40.763\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, el c\u00f3digo de inferencia de forma para \\\"tf.raw_ops.Dequantize\\\" presenta una vulnerabilidad que podr\u00eda desencadenar una denegaci\u00f3n de servicio por medio de un error de seguridad si un atacante proporciona argumentos no v\u00e1lidos.\u0026#xa0;La inferencia de forma [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) usa \\\"axis\\\" para seleccionar entre dos valores diferentes para \\\"minmax_rank \\\"que luego se usa para recuperar las dimensiones del tensor.\u0026#xa0;Sin embargo, el c\u00f3digo asume que el \\\"axis\\\" puede ser \\\"-1\\\" o un valor mayor que \\\"-1\\\", sin comprobaci\u00f3n para los otros valores.\u0026#xa0;Hemos solucionado el problema en GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-20\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-1284\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.4\",\"matchCriteriaId\":\"0F83C081-51CC-415F-A8C0-0A44C75E2CD6\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.3\",\"matchCriteriaId\":\"BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"D03E99A7-4E3D-427D-A156-C0713E9FB02A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*\",\"matchCriteriaId\":\"70FA6E48-6C57-40CA-809F-4E3D07CBF348\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*\",\"matchCriteriaId\":\"42187561-E491-434D-828C-F36701446634\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*\",\"matchCriteriaId\":\"C66B61C8-450A-4C5E-9174-F970D6DEE778\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Vendor Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Vendor Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…