CVE-2022-23561 (GCVE-0-2022-23561)

Vulnerability from cvelistv5 – Published: 2022-02-04 22:32 – Updated: 2025-04-23 19:07
VLAI?
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CWE
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: >= 2.7.0, < 2.7.1
Affected: >= 2.6.0, < 2.6.3
Affected: < 2.5.3
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.500Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23561",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T15:56:28.819372Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:07:29.089Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:46.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6"
        }
      ],
      "source": {
        "advisory": "GHSA-9c78-vcq7-7vxq",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds write in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23561",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds write in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9c78-vcq7-7vxq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23561",
    "datePublished": "2022-02-04T22:32:46.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:07:29.089Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndIncluding\": \"2.5.2\", \"matchCriteriaId\": \"688150BF-477C-48FC-9AEF-A79AC57A6DDC\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.6.0\", \"versionEndIncluding\": \"2.6.2\", \"matchCriteriaId\": \"C9E69B60-8C97-47E2-9027-9598B8392E5D\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*\", \"matchCriteriaId\": \"2EDFAAB8-799C-4259-9102-944D4760DA2C\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"}, {\"lang\": \"es\", \"value\": \"Tensorflow es un Marco de Aprendizaje Autom\\u00e1tico de C\\u00f3digo Abierto. Un atacante puede dise\\u00f1ar un modelo de TFLite que cause una escritura fuera de l\\u00edmites de un array en TFLite. De hecho, el atacante puede anular la lista enlazada usada por el asignador de memoria. Esto puede ser aprovechado para una escritura arbitraria primitiva bajo determinadas condiciones. La correcci\\u00f3n ser\\u00e1 incluida en TensorFlow versi\\u00f3n 2.8.0. Tambi\\u00e9n seleccionaremos este commit en TensorFlow versi\\u00f3n 2.7.1, TensorFlow versi\\u00f3n 2.6.3, y TensorFlow versi\\u00f3n 2.5.3, ya que estos tambi\\u00e9n est\\u00e1n afectados y a\\u00fan est\\u00e1n en el rango admitido\"}]",
      "id": "CVE-2022-23561",
      "lastModified": "2024-11-21T06:48:49.027",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\", \"baseScore\": 8.8, \"baseSeverity\": \"HIGH\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 2.8, \"impactScore\": 5.9}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\", \"baseScore\": 8.8, \"baseSeverity\": \"HIGH\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 2.8, \"impactScore\": 5.9}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:N/AC:L/Au:S/C:P/I:P/A:P\", \"baseScore\": 6.5, \"accessVector\": \"NETWORK\", \"accessComplexity\": \"LOW\", \"authentication\": \"SINGLE\", \"confidentialityImpact\": \"PARTIAL\", \"integrityImpact\": \"PARTIAL\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"MEDIUM\", \"exploitabilityScore\": 8.0, \"impactScore\": 6.4, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2022-02-04T23:15:13.793",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-787\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2022-23561\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2022-02-04T23:15:13.793\",\"lastModified\":\"2024-11-21T06:48:49.027\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un atacante puede dise\u00f1ar un modelo de TFLite que cause una escritura fuera de l\u00edmites de un array en TFLite. De hecho, el atacante puede anular la lista enlazada usada por el asignador de memoria. Esto puede ser aprovechado para una escritura arbitraria primitiva bajo determinadas condiciones. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\",\"baseScore\":8.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.8,\"impactScore\":5.9},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\",\"baseScore\":8.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.8,\"impactScore\":5.9}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:N/AC:L/Au:S/C:P/I:P/A:P\",\"baseScore\":6.5,\"accessVector\":\"NETWORK\",\"accessComplexity\":\"LOW\",\"authentication\":\"SINGLE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":8.0,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-787\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndIncluding\":\"2.5.2\",\"matchCriteriaId\":\"688150BF-477C-48FC-9AEF-A79AC57A6DDC\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.6.0\",\"versionEndIncluding\":\"2.6.2\",\"matchCriteriaId\":\"C9E69B60-8C97-47E2-9027-9598B8392E5D\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"2EDFAAB8-799C-4259-9102-944D4760DA2C\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]}]}}",
    "vulnrichment": {
      "containers": "{\"cna\": {\"affected\": [{\"product\": \"tensorflow\", \"vendor\": \"tensorflow\", \"versions\": [{\"status\": \"affected\", \"version\": \"\u003e= 2.7.0, \u003c 2.7.1\"}, {\"status\": \"affected\", \"version\": \"\u003e= 2.6.0, \u003c 2.6.3\"}, {\"status\": \"affected\", \"version\": \"\u003c 2.5.3\"}]}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"}], \"metrics\": [{\"cvssV3_1\": {\"attackComplexity\": \"LOW\", \"attackVector\": \"NETWORK\", \"availabilityImpact\": \"HIGH\", \"baseScore\": 8.8, \"baseSeverity\": \"HIGH\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"scope\": \"UNCHANGED\", \"userInteraction\": \"NONE\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\", \"version\": \"3.1\"}}], \"problemTypes\": [{\"descriptions\": [{\"cweId\": \"CWE-787\", \"description\": \"CWE-787: Out-of-bounds Write\", \"lang\": \"en\", \"type\": \"CWE\"}]}], \"providerMetadata\": {\"dateUpdated\": \"2022-02-04T22:32:46.000Z\", \"orgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"shortName\": \"GitHub_M\"}, \"references\": [{\"tags\": [\"x_refsource_CONFIRM\"], \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq\"}, {\"tags\": [\"x_refsource_MISC\"], \"url\": \"https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6\"}], \"source\": {\"advisory\": \"GHSA-9c78-vcq7-7vxq\", \"discovery\": \"UNKNOWN\"}, \"title\": \"Out of bounds write in TFLite\", \"x_legacyV4Record\": {\"CVE_data_meta\": {\"ASSIGNER\": \"security-advisories@github.com\", \"ID\": \"CVE-2022-23561\", \"STATE\": \"PUBLIC\", \"TITLE\": \"Out of bounds write in TFLite\"}, \"affects\": {\"vendor\": {\"vendor_data\": [{\"product\": {\"product_data\": [{\"product_name\": \"tensorflow\", \"version\": {\"version_data\": [{\"version_value\": \"\u003e= 2.7.0, \u003c 2.7.1\"}, {\"version_value\": \"\u003e= 2.6.0, \u003c 2.6.3\"}, {\"version_value\": \"\u003c 2.5.3\"}]}}]}, \"vendor_name\": \"tensorflow\"}]}}, \"data_format\": \"MITRE\", \"data_type\": \"CVE\", \"data_version\": \"4.0\", \"description\": {\"description_data\": [{\"lang\": \"eng\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"}]}, \"impact\": {\"cvss\": {\"attackComplexity\": \"LOW\", \"attackVector\": \"NETWORK\", \"availabilityImpact\": \"HIGH\", \"baseScore\": 8.8, \"baseSeverity\": \"HIGH\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"scope\": \"UNCHANGED\", \"userInteraction\": \"NONE\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\", \"version\": \"3.1\"}}, \"problemtype\": {\"problemtype_data\": [{\"description\": [{\"lang\": \"eng\", \"value\": \"CWE-787: Out-of-bounds Write\"}]}]}, \"references\": {\"reference_data\": [{\"name\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq\", \"refsource\": \"CONFIRM\", \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq\"}, {\"name\": \"https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6\", \"refsource\": \"MISC\", \"url\": \"https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6\"}]}, \"source\": {\"advisory\": \"GHSA-9c78-vcq7-7vxq\", \"discovery\": \"UNKNOWN\"}}}, \"adp\": [{\"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-03T03:43:46.500Z\"}, \"title\": \"CVE Program Container\", \"references\": [{\"tags\": [\"x_refsource_CONFIRM\", \"x_transferred\"], \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq\"}, {\"tags\": [\"x_refsource_MISC\", \"x_transferred\"], \"url\": \"https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6\"}]}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2022-23561\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"none\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"total\"}], \"version\": \"2.0.3\", \"timestamp\": \"2025-04-23T15:56:28.819372Z\"}}}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2025-04-23T15:56:30.366Z\"}}]}",
      "cveMetadata": "{\"assignerOrgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"assignerShortName\": \"GitHub_M\", \"cveId\": \"CVE-2022-23561\", \"datePublished\": \"2022-02-04T22:32:46.000Z\", \"dateReserved\": \"2022-01-19T00:00:00.000Z\", \"dateUpdated\": \"2025-04-23T19:07:29.089Z\", \"state\": \"PUBLISHED\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…