CVE-2024-37059 (GCVE-0-2024-37059)
Vulnerability from cvelistv5 – Published: 2024-06-04 12:01 – Updated: 2024-08-02 03:43
VLAI?
Summary
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user’s system when interacted with.
Severity ?
8.8 (High)
CWE
- CWE-502 - Deserialization of Untrusted Data
Assigner
References
{
"containers": {
"adp": [
{
"affected": [
{
"cpes": [
"cpe:2.3:a:mlflow:mlflow:-:*:*:*:*:*:*:*"
],
"defaultStatus": "unknown",
"product": "mlflow",
"vendor": "mlflow",
"versions": [
{
"lessThanOrEqual": "*",
"status": "affected",
"version": "0.5.0",
"versionType": "custom"
}
]
}
],
"metrics": [
{
"other": {
"content": {
"id": "CVE-2024-37059",
"options": [
{
"Exploitation": "none"
},
{
"Automatable": "no"
},
{
"Technical Impact": "total"
}
],
"role": "CISA Coordinator",
"timestamp": "2024-06-06T14:55:38.397370Z",
"version": "2.0.3"
},
"type": "ssvc"
}
}
],
"providerMetadata": {
"dateUpdated": "2024-07-24T17:24:46.370Z",
"orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
"shortName": "CISA-ADP"
},
"title": "CISA ADP Vulnrichment"
},
{
"providerMetadata": {
"dateUpdated": "2024-08-02T03:43:50.934Z",
"orgId": "af854a3a-2127-422b-91ae-364da2661108",
"shortName": "CVE"
},
"references": [
{
"tags": [
"x_transferred"
],
"url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
}
],
"title": "CVE Program Container"
}
],
"cna": {
"affected": [
{
"defaultStatus": "unaffected",
"packageName": "mlflow",
"product": "MLflow",
"repo": "https://github.com/mlflow/mlflow",
"vendor": "MLflow",
"versions": [
{
"lessThanOrEqual": "*",
"status": "affected",
"version": "0.5.0",
"versionType": "semver"
}
]
}
],
"descriptions": [
{
"lang": "en",
"supportingMedia": [
{
"base64": false,
"type": "text/html",
"value": "\u003cspan style=\"background-color: rgb(255, 255, 255);\"\u003eDeserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user\u2019s system when interacted with.\u003c/span\u003e\u003cbr\u003e"
}
],
"value": "Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user\u2019s system when interacted with."
}
],
"impacts": [
{
"capecId": "CAPEC-586",
"descriptions": [
{
"lang": "en",
"value": "CAPEC-586 Object Injection"
}
]
}
],
"metrics": [
{
"cvssV3_1": {
"attackComplexity": "LOW",
"attackVector": "NETWORK",
"availabilityImpact": "HIGH",
"baseScore": 8.8,
"baseSeverity": "HIGH",
"confidentialityImpact": "HIGH",
"integrityImpact": "HIGH",
"privilegesRequired": "NONE",
"scope": "UNCHANGED",
"userInteraction": "REQUIRED",
"vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
"version": "3.1"
},
"format": "CVSS",
"scenarios": [
{
"lang": "en",
"value": "GENERAL"
}
]
}
],
"problemTypes": [
{
"descriptions": [
{
"cweId": "CWE-502",
"description": "CWE-502 Deserialization of Untrusted Data",
"lang": "en",
"type": "CWE"
}
]
}
],
"providerMetadata": {
"dateUpdated": "2024-06-04T12:01:58.728Z",
"orgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
"shortName": "HiddenLayer"
},
"references": [
{
"url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
}
],
"source": {
"discovery": "UNKNOWN"
},
"x_generator": {
"engine": "Vulnogram 0.2.0"
}
}
},
"cveMetadata": {
"assignerOrgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
"assignerShortName": "HiddenLayer",
"cveId": "CVE-2024-37059",
"datePublished": "2024-06-04T12:01:58.728Z",
"dateReserved": "2024-05-31T14:16:48.807Z",
"dateUpdated": "2024-08-02T03:43:50.934Z",
"state": "PUBLISHED"
},
"dataType": "CVE_RECORD",
"dataVersion": "5.1",
"vulnerability-lookup:meta": {
"fkie_nvd": {
"descriptions": "[{\"lang\": \"en\", \"value\": \"Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user\\u2019s system when interacted with.\"}, {\"lang\": \"es\", \"value\": \"La deserializaci\\u00f3n de datos que no son de confianza puede ocurrir en versiones de la plataforma MLflow que ejecutan la versi\\u00f3n 0.5.0 o posterior, lo que permite que un modelo de PyTorch cargado maliciosamente ejecute c\\u00f3digo arbitrario en el sistema de un usuario final cuando interact\\u00faa con \\u00e9l.\"}]",
"id": "CVE-2024-37059",
"lastModified": "2024-11-21T09:23:07.600",
"metrics": "{\"cvssMetricV31\": [{\"source\": \"6f8de1f0-f67e-45a6-b68f-98777fdb759c\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\", \"baseScore\": 8.8, \"baseSeverity\": \"HIGH\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"NONE\", \"userInteraction\": \"REQUIRED\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 2.8, \"impactScore\": 5.9}]}",
"published": "2024-06-04T12:15:12.227",
"references": "[{\"url\": \"https://hiddenlayer.com/sai-security-advisory/mlflow-june2024\", \"source\": \"6f8de1f0-f67e-45a6-b68f-98777fdb759c\"}, {\"url\": \"https://hiddenlayer.com/sai-security-advisory/mlflow-june2024\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\"}]",
"sourceIdentifier": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
"vulnStatus": "Awaiting Analysis",
"weaknesses": "[{\"source\": \"6f8de1f0-f67e-45a6-b68f-98777fdb759c\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-502\"}]}]"
},
"nvd": "{\"cve\":{\"id\":\"CVE-2024-37059\",\"sourceIdentifier\":\"6f8de1f0-f67e-45a6-b68f-98777fdb759c\",\"published\":\"2024-06-04T12:15:12.227\",\"lastModified\":\"2025-02-03T14:46:23.250\",\"vulnStatus\":\"Analyzed\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user\u2019s system when interacted with.\"},{\"lang\":\"es\",\"value\":\"La deserializaci\u00f3n de datos que no son de confianza puede ocurrir en versiones de la plataforma MLflow que ejecutan la versi\u00f3n 0.5.0 o posterior, lo que permite que un modelo de PyTorch cargado maliciosamente ejecute c\u00f3digo arbitrario en el sistema de un usuario final cuando interact\u00faa con \u00e9l.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"6f8de1f0-f67e-45a6-b68f-98777fdb759c\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\",\"baseScore\":8.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"REQUIRED\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.8,\"impactScore\":5.9},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\",\"baseScore\":8.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"REQUIRED\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.8,\"impactScore\":5.9}]},\"weaknesses\":[{\"source\":\"6f8de1f0-f67e-45a6-b68f-98777fdb759c\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-502\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-502\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"0.5.0\",\"matchCriteriaId\":\"133E0FDE-6C06-4CEE-A7B0-11A4E4980846\"}]}]}],\"references\":[{\"url\":\"https://hiddenlayer.com/sai-security-advisory/mlflow-june2024\",\"source\":\"6f8de1f0-f67e-45a6-b68f-98777fdb759c\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://hiddenlayer.com/sai-security-advisory/mlflow-june2024\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]}]}}",
"vulnrichment": {
"containers": "{\"adp\": [{\"title\": \"CVE Program Container\", \"references\": [{\"url\": \"https://hiddenlayer.com/sai-security-advisory/mlflow-june2024\", \"tags\": [\"x_transferred\"]}], \"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-02T03:43:50.934Z\"}}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2024-37059\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"none\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"total\"}], \"version\": \"2.0.3\", \"timestamp\": \"2024-06-06T14:55:38.397370Z\"}}}], \"affected\": [{\"cpes\": [\"cpe:2.3:a:mlflow:mlflow:-:*:*:*:*:*:*:*\"], \"vendor\": \"mlflow\", \"product\": \"mlflow\", \"versions\": [{\"status\": \"affected\", \"version\": \"0.5.0\", \"versionType\": \"custom\", \"lessThanOrEqual\": \"*\"}], \"defaultStatus\": \"unknown\"}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2024-06-06T14:56:27.384Z\"}}], \"cna\": {\"source\": {\"discovery\": \"UNKNOWN\"}, \"impacts\": [{\"capecId\": \"CAPEC-586\", \"descriptions\": [{\"lang\": \"en\", \"value\": \"CAPEC-586 Object Injection\"}]}], \"metrics\": [{\"format\": \"CVSS\", \"cvssV3_1\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 8.8, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"HIGH\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\", \"integrityImpact\": \"HIGH\", \"userInteraction\": \"REQUIRED\", \"attackComplexity\": \"LOW\", \"availabilityImpact\": \"HIGH\", \"privilegesRequired\": \"NONE\", \"confidentialityImpact\": \"HIGH\"}, \"scenarios\": [{\"lang\": \"en\", \"value\": \"GENERAL\"}]}], \"affected\": [{\"repo\": \"https://github.com/mlflow/mlflow\", \"vendor\": \"MLflow\", \"product\": \"MLflow\", \"versions\": [{\"status\": \"affected\", \"version\": \"0.5.0\", \"versionType\": \"semver\", \"lessThanOrEqual\": \"*\"}], \"packageName\": \"mlflow\", \"defaultStatus\": \"unaffected\"}], \"references\": [{\"url\": \"https://hiddenlayer.com/sai-security-advisory/mlflow-june2024\"}], \"x_generator\": {\"engine\": \"Vulnogram 0.2.0\"}, \"descriptions\": [{\"lang\": \"en\", \"value\": \"Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user\\u2019s system when interacted with.\", \"supportingMedia\": [{\"type\": \"text/html\", \"value\": \"\u003cspan style=\\\"background-color: rgb(255, 255, 255);\\\"\u003eDeserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user\\u2019s system when interacted with.\u003c/span\u003e\u003cbr\u003e\", \"base64\": false}]}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"CWE\", \"cweId\": \"CWE-502\", \"description\": \"CWE-502 Deserialization of Untrusted Data\"}]}], \"providerMetadata\": {\"orgId\": \"6f8de1f0-f67e-45a6-b68f-98777fdb759c\", \"shortName\": \"HiddenLayer\", \"dateUpdated\": \"2024-06-04T12:01:58.728Z\"}}}",
"cveMetadata": "{\"cveId\": \"CVE-2024-37059\", \"state\": \"PUBLISHED\", \"dateUpdated\": \"2024-08-02T03:43:50.934Z\", \"dateReserved\": \"2024-05-31T14:16:48.807Z\", \"assignerOrgId\": \"6f8de1f0-f67e-45a6-b68f-98777fdb759c\", \"datePublished\": \"2024-06-04T12:01:58.728Z\", \"assignerShortName\": \"HiddenLayer\"}",
"dataType": "CVE_RECORD",
"dataVersion": "5.1"
}
}
}
Loading…
Loading…
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.
Loading…
Loading…