FKIE_CVE-2022-35989
Vulnerability from fkie_nvd - Published: 2022-09-16 22:15 - Updated: 2024-11-21 07:12
Severity ?
5.9 (Medium) - CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H
7.5 (High) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
7.5 (High) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Summary
TensorFlow is an open source platform for machine learning. When `MaxPool` receives a window size input array `ksize` with dimensions greater than its input tensor `input`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
References
Impacted products
| Vendor | Product | Version | |
|---|---|---|---|
| tensorflow | * | ||
| tensorflow | * | ||
| tensorflow | * | ||
| tensorflow | 2.10 | ||
| tensorflow | 2.10 | ||
| tensorflow | 2.10 | ||
| tensorflow | 2.10 |
{
"configurations": [
{
"nodes": [
{
"cpeMatch": [
{
"criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
"matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
"versionEndExcluding": "2.7.2",
"vulnerable": true
},
{
"criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
"matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
"versionEndExcluding": "2.8.1",
"versionStartIncluding": "2.8.0",
"vulnerable": true
},
{
"criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
"matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
"versionEndExcluding": "2.9.1",
"versionStartIncluding": "2.9.0",
"vulnerable": true
},
{
"criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
"matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
"vulnerable": true
},
{
"criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
"matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
"vulnerable": true
},
{
"criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
"matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
"vulnerable": true
},
{
"criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
"matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
"vulnerable": true
}
],
"negate": false,
"operator": "OR"
}
]
}
],
"cveTags": [],
"descriptions": [
{
"lang": "en",
"value": "TensorFlow is an open source platform for machine learning. When `MaxPool` receives a window size input array `ksize` with dimensions greater than its input tensor `input`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
},
{
"lang": "es",
"value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"MaxPool\" recibe una matriz de entrada de tama\u00f1o de ventana \"ksize\" con dimensiones mayores que su tensor de entrada \"input\", el kernel de la GPU da un fallo \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
}
],
"id": "CVE-2022-35989",
"lastModified": "2024-11-21T07:12:07.570",
"metrics": {
"cvssMetricV31": [
{
"cvssData": {
"attackComplexity": "HIGH",
"attackVector": "NETWORK",
"availabilityImpact": "HIGH",
"baseScore": 5.9,
"baseSeverity": "MEDIUM",
"confidentialityImpact": "NONE",
"integrityImpact": "NONE",
"privilegesRequired": "NONE",
"scope": "UNCHANGED",
"userInteraction": "NONE",
"vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
"version": "3.1"
},
"exploitabilityScore": 2.2,
"impactScore": 3.6,
"source": "security-advisories@github.com",
"type": "Secondary"
},
{
"cvssData": {
"attackComplexity": "LOW",
"attackVector": "NETWORK",
"availabilityImpact": "HIGH",
"baseScore": 7.5,
"baseSeverity": "HIGH",
"confidentialityImpact": "NONE",
"integrityImpact": "NONE",
"privilegesRequired": "NONE",
"scope": "UNCHANGED",
"userInteraction": "NONE",
"vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
"version": "3.1"
},
"exploitabilityScore": 3.9,
"impactScore": 3.6,
"source": "nvd@nist.gov",
"type": "Primary"
}
]
},
"published": "2022-09-16T22:15:11.667",
"references": [
{
"source": "security-advisories@github.com",
"tags": [
"Patch",
"Third Party Advisory"
],
"url": "https://github.com/tensorflow/tensorflow/commit/32d7bd3defd134f21a4e344c8dfd40099aaf6b18"
},
{
"source": "security-advisories@github.com",
"tags": [
"Third Party Advisory"
],
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j43h-pgmg-5hjq"
},
{
"source": "af854a3a-2127-422b-91ae-364da2661108",
"tags": [
"Patch",
"Third Party Advisory"
],
"url": "https://github.com/tensorflow/tensorflow/commit/32d7bd3defd134f21a4e344c8dfd40099aaf6b18"
},
{
"source": "af854a3a-2127-422b-91ae-364da2661108",
"tags": [
"Third Party Advisory"
],
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j43h-pgmg-5hjq"
}
],
"sourceIdentifier": "security-advisories@github.com",
"vulnStatus": "Modified",
"weaknesses": [
{
"description": [
{
"lang": "en",
"value": "CWE-617"
}
],
"source": "security-advisories@github.com",
"type": "Secondary"
}
]
}
Loading…
Loading…
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.
Loading…
Loading…