GHSA-27RC-728F-X5W2

Vulnerability from github – Published: 2022-11-21 21:54 – Updated: 2022-11-21 21:54
VLAI?
Summary
`CHECK` fail via inputs in `SdcaOptimizer`
Details

Impact

Inputs dense_features or example_state_data not of rank 2 will trigger a CHECK fail in SdcaOptimizer.

import tensorflow as tf

tf.raw_ops.SdcaOptimizer(
    sparse_example_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
    sparse_feature_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
    sparse_feature_values=8 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
    dense_features=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
    example_weights=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
    example_labels=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
    sparse_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
    sparse_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
    dense_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
    example_state_data=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
    loss_type="squared_loss",
    l1=0.0,
    l2=0.0,
    num_loss_partitions=1,
    num_inner_iterations=1,
    adaptative=False,)

Patches

We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa.

The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Zizhuang Deng of IIE, UCAS

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.8.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.10.0"
            },
            {
              "fixed": "2.10.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.8.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.8.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.10.0"
            },
            {
              "fixed": "2.10.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.10.0"
            },
            {
              "fixed": "2.10.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2022-41899"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-20",
      "CWE-617"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-11-21T21:54:26Z",
    "nvd_published_at": "2022-11-18T22:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nInputs `dense_features` or `example_state_data` not of rank 2 will trigger a `CHECK` fail in [`SdcaOptimizer`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sdca_internal.cc).\n\n```python\nimport tensorflow as tf\n\ntf.raw_ops.SdcaOptimizer(\n    sparse_example_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],\n    sparse_feature_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],\n    sparse_feature_values=8 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],\n    dense_features=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],\n    example_weights=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),\n    example_labels=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),\n    sparse_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],\n    sparse_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],\n    dense_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],\n    example_state_data=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),\n    loss_type=\"squared_loss\",\n    l1=0.0,\n    l2=0.0,\n    num_loss_partitions=1,\n    num_inner_iterations=1,\n    adaptative=False,)\n```\n\n### Patches\nWe have patched the issue in GitHub commit [80ff197d03db2a70c6a111f97dcdacad1b0babfa](https://github.com/tensorflow/tensorflow/commit/80ff197d03db2a70c6a111f97dcdacad1b0babfa).\n\nThe fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.\n\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n\n### Attribution\nThis vulnerability has been reported by Zizhuang Deng of IIE, UCAS\n",
  "id": "GHSA-27rc-728f-x5w2",
  "modified": "2022-11-21T21:54:26Z",
  "published": "2022-11-21T21:54:26Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27rc-728f-x5w2"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-41899"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/80ff197d03db2a70c6a111f97dcdacad1b0babfa"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sdca_internal.cc"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    }
  ],
  "summary": "`CHECK` fail via inputs in `SdcaOptimizer`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…