GHSA-2GFX-95X2-5V3X

Vulnerability from github – Published: 2021-05-21 14:22 – Updated: 2024-10-30 23:24
VLAI?
Summary
Heap buffer overflow in `QuantizedReshape`
Details

Impact

An attacker can cause a heap buffer overflow in QuantizedReshape by passing in invalid thresholds for the quantization:

import tensorflow as tf

tensor = tf.constant([], dtype=tf.qint32)
shape = tf.constant([], dtype=tf.int32)
input_min = tf.constant([], dtype=tf.float32)
input_max = tf.constant([], dtype=tf.float32)

tf.raw_ops.QuantizedReshape(tensor=tensor, shape=shape, input_min=input_min, input_max=input_max)

This is because the implementation assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly:

const auto& input_min_float_tensor = ctx->input(2);
...
const float input_min_float = input_min_float_tensor.flat<float>()(0);
const auto& input_max_float_tensor = ctx->input(3);
...
const float input_max_float = input_max_float_tensor.flat<float>()(0);

However, if any of these tensors is empty, then .flat<T>() is an empty buffer and accessing the element at position 0 results in overflow.

Patches

We have patched the issue in GitHub commit a324ac84e573fba362a5e53d4e74d5de6729933e.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29536"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T22:36:45Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nAn attacker can cause a heap buffer overflow in `QuantizedReshape` by passing in invalid thresholds for the quantization:\n\n```python\nimport tensorflow as tf\n\ntensor = tf.constant([], dtype=tf.qint32)\nshape = tf.constant([], dtype=tf.int32)\ninput_min = tf.constant([], dtype=tf.float32)\ninput_max = tf.constant([], dtype=tf.float32)\n\ntf.raw_ops.QuantizedReshape(tensor=tensor, shape=shape, input_min=input_min, input_max=input_max)\n```\n\nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly:\n\n```cc\nconst auto\u0026 input_min_float_tensor = ctx-\u003einput(2);\n...\nconst float input_min_float = input_min_float_tensor.flat\u003cfloat\u003e()(0);\nconst auto\u0026 input_max_float_tensor = ctx-\u003einput(3);\n...\nconst float input_max_float = input_max_float_tensor.flat\u003cfloat\u003e()(0);\n```\n\nHowever, if any of these tensors is empty, then `.flat\u003cT\u003e()` is an empty buffer and accessing the element at position 0 results in overflow.\n\n### Patches\nWe have patched the issue in GitHub commit [a324ac84e573fba362a5e53d4e74d5de6729933e](https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.",
  "id": "GHSA-2gfx-95x2-5v3x",
  "modified": "2024-10-30T23:24:29Z",
  "published": "2021-05-21T14:22:32Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2gfx-95x2-5v3x"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29536"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-464.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-662.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-173.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap buffer overflow in `QuantizedReshape`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…