ghsa-445q-cj49-wrrx
Vulnerability from github
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix accesses to uninit stack slots
Privileged programs are supposed to be able to read uninitialized stack memory (ever since 6715df8d5) but, before this patch, these accesses were permitted inconsistently. In particular, accesses were permitted above state->allocated_stack, but not below it. In other words, if the stack was already "large enough", the access was permitted, but otherwise the access was rejected instead of being allowed to "grow the stack". This undesired rejection was happening in two places: - in check_stack_slot_within_bounds() - in check_stack_range_initialized() This patch arranges for these accesses to be permitted. A bunch of tests that were relying on the old rejection had to change; all of them were changed to add also run unprivileged, in which case the old behavior persists. One tests couldn't be updated - global_func16 - because it can't run unprivileged for other reasons.
This patch also fixes the tracking of the stack size for variable-offset reads. This second fix is bundled in the same commit as the first one because they're inter-related. Before this patch, writes to the stack using registers containing a variable offset (as opposed to registers with fixed, known values) were not properly contributing to the function's needed stack size. As a result, it was possible for a program to verify, but then to attempt to read out-of-bounds data at runtime because a too small stack had been allocated for it.
Each function tracks the size of the stack it needs in bpf_subprog_info.stack_depth, which is maintained by update_stack_depth(). For regular memory accesses, check_mem_access() was calling update_state_depth() but it was passing in only the fixed part of the offset register, ignoring the variable offset. This was incorrect; the minimum possible value of that register should be used instead.
This tracking is now fixed by centralizing the tracking of stack size in grow_stack_state(), and by lifting the calls to grow_stack_state() to check_stack_access_within_bounds() as suggested by Andrii. The code is now simpler and more convincingly tracks the correct maximum stack size. check_stack_range_initialized() can now rely on enough stack having been allocated for the access; this helps with the fix for the first issue.
A few tests were changed to also check the stack depth computation. The one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.
{ "affected": [], "aliases": [ "CVE-2023-52452" ], "database_specific": { "cwe_ids": [ "CWE-665" ], "github_reviewed": false, "github_reviewed_at": null, "nvd_published_at": "2024-02-22T17:15:08Z", "severity": "HIGH" }, "details": "In the Linux kernel, the following vulnerability has been resolved:\n\nbpf: Fix accesses to uninit stack slots\n\nPrivileged programs are supposed to be able to read uninitialized stack\nmemory (ever since 6715df8d5) but, before this patch, these accesses\nwere permitted inconsistently. In particular, accesses were permitted\nabove state-\u003eallocated_stack, but not below it. In other words, if the\nstack was already \"large enough\", the access was permitted, but\notherwise the access was rejected instead of being allowed to \"grow the\nstack\". This undesired rejection was happening in two places:\n- in check_stack_slot_within_bounds()\n- in check_stack_range_initialized()\nThis patch arranges for these accesses to be permitted. A bunch of tests\nthat were relying on the old rejection had to change; all of them were\nchanged to add also run unprivileged, in which case the old behavior\npersists. One tests couldn\u0027t be updated - global_func16 - because it\ncan\u0027t run unprivileged for other reasons.\n\nThis patch also fixes the tracking of the stack size for variable-offset\nreads. This second fix is bundled in the same commit as the first one\nbecause they\u0027re inter-related. Before this patch, writes to the stack\nusing registers containing a variable offset (as opposed to registers\nwith fixed, known values) were not properly contributing to the\nfunction\u0027s needed stack size. As a result, it was possible for a program\nto verify, but then to attempt to read out-of-bounds data at runtime\nbecause a too small stack had been allocated for it.\n\nEach function tracks the size of the stack it needs in\nbpf_subprog_info.stack_depth, which is maintained by\nupdate_stack_depth(). For regular memory accesses, check_mem_access()\nwas calling update_state_depth() but it was passing in only the fixed\npart of the offset register, ignoring the variable offset. This was\nincorrect; the minimum possible value of that register should be used\ninstead.\n\nThis tracking is now fixed by centralizing the tracking of stack size in\ngrow_stack_state(), and by lifting the calls to grow_stack_state() to\ncheck_stack_access_within_bounds() as suggested by Andrii. The code is\nnow simpler and more convincingly tracks the correct maximum stack size.\ncheck_stack_range_initialized() can now rely on enough stack having been\nallocated for the access; this helps with the fix for the first issue.\n\nA few tests were changed to also check the stack depth computation. The\none that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.", "id": "GHSA-445q-cj49-wrrx", "modified": "2024-03-18T18:32:17Z", "published": "2024-02-22T18:30:30Z", "references": [ { "type": "ADVISORY", "url": "https://nvd.nist.gov/vuln/detail/CVE-2023-52452" }, { "type": "WEB", "url": "https://git.kernel.org/stable/c/0954982db8283016bf38e9db2da5adf47a102e19" }, { "type": "WEB", "url": "https://git.kernel.org/stable/c/6b4a64bafd107e521c01eec3453ce94a3fb38529" }, { "type": "WEB", "url": "https://git.kernel.org/stable/c/fbcf372c8eda2290470268e0afb5ab5d5f5d5fde" } ], "schema_version": "1.4.0", "severity": [ { "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "type": "CVSS_V3" } ] }
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.