GHSA-772P-X54P-HJRV
Vulnerability from github – Published: 2021-05-21 14:21 – Updated: 2024-10-28 21:26Impact
A malicious user could trigger a division by 0 in Conv3D implementation:
import tensorflow as tf
input_tensor = tf.constant([], shape=[0, 0, 0, 0, 0], dtype=tf.float32)
filter_tensor = tf.constant([], shape=[0, 0, 0, 0, 0], dtype=tf.float32)
tf.raw_ops.Conv3D(input=input_tensor, filter=filter_tensor, strides=[1, 56, 56, 56, 1], padding='VALID', data_format='NDHWC', dilations=[1, 1, 1, 23, 1])
The implementation does a modulo operation based on user controlled input:
const int64 out_depth = filter.dim_size(4);
OP_REQUIRES(context, in_depth % filter_depth == 0, ...);
Thus, when filter has a 0 as the fifth element, this results in a division by 0.
Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash:
import tensorflow as tf
input_tensor = tf.constant([], shape=[2, 2, 2, 2, 0], dtype=tf.float32)
filter_tensor = tf.constant([], shape=[0, 0, 2, 6, 2], dtype=tf.float32)
tf.raw_ops.Conv3D(input=input_tensor, filter=filter_tensor, strides=[1, 56, 39, 34, 1], padding='VALID', data_format='NDHWC', dilations=[1, 1, 1, 1, 1])
The shape of the two tensors must follow the constraints specified in the op description.
Patches
We have patched the issue in GitHub commit 799f835a3dfa00a4d852defa29b15841eea9d64f.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
}
],
"aliases": [
"CVE-2021-29517"
],
"database_specific": {
"cwe_ids": [
"CWE-369"
],
"github_reviewed": true,
"github_reviewed_at": "2021-05-18T23:32:11Z",
"nvd_published_at": "2021-05-14T20:15:00Z",
"severity": "LOW"
},
"details": "### Impact\nA malicious user could trigger a division by 0 in `Conv3D` implementation:\n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([], shape=[0, 0, 0, 0, 0], dtype=tf.float32)\nfilter_tensor = tf.constant([], shape=[0, 0, 0, 0, 0], dtype=tf.float32)\n\ntf.raw_ops.Conv3D(input=input_tensor, filter=filter_tensor, strides=[1, 56, 56, 56, 1], padding=\u0027VALID\u0027, data_format=\u0027NDHWC\u0027, dilations=[1, 1, 1, 23, 1])\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input:\n\n```cc\n const int64 out_depth = filter.dim_size(4);\n OP_REQUIRES(context, in_depth % filter_depth == 0, ...);\n```\n\nThus, when `filter` has a 0 as the fifth element, this results in a division by 0.\n\nAdditionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash:\n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([], shape=[2, 2, 2, 2, 0], dtype=tf.float32)\nfilter_tensor = tf.constant([], shape=[0, 0, 2, 6, 2], dtype=tf.float32)\n\ntf.raw_ops.Conv3D(input=input_tensor, filter=filter_tensor, strides=[1, 56, 39, 34, 1], padding=\u0027VALID\u0027, data_format=\u0027NDHWC\u0027, dilations=[1, 1, 1, 1, 1])\n```\n\nThe shape of the two tensors must follow the constraints specified in the [op description](https://www.tensorflow.org/api_docs/python/tf/raw_ops/Conv3D).\n\n### Patches\nWe have patched the issue in GitHub commit [799f835a3dfa00a4d852defa29b15841eea9d64f](https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.",
"id": "GHSA-772p-x54p-hjrv",
"modified": "2024-10-28T21:26:22Z",
"published": "2021-05-21T14:21:01Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29517"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-445.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-643.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-154.yaml"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
"type": "CVSS_V4"
}
],
"summary": "Division by zero in `Conv3D`"
}
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.