GHSA-95XM-G58G-3P88

Vulnerability from github – Published: 2021-08-25 14:44 – Updated: 2024-11-13 16:32
VLAI?
Summary
Integer division by 0 in sparse reshaping
Details

Impact

The implementation of tf.raw_ops.SparseReshape can be made to trigger an integral division by 0 exception:

import tensorflow as tf

tf.raw_ops.SparseReshape(
  input_indices = np.ones((1,3)),
  input_shape = np.array([1,1,0]),
  new_shape = np.array([1,0]))

The implementation calls the reshaping functor whenever there is at least an index in the input but does not check that shape of the input or the target shape have both a non-zero number of elements.

The reshape functor blindly divides by the dimensions of the target shape. Hence, if this is not checked, code will result in a division by 0.

Patches

We have patched the issue in GitHub commit 4923de56ec94fff7770df259ab7f2288a74feb41.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1 as this is the other affected version.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-37640"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-369"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-23T18:28:24Z",
    "nvd_published_at": "2021-08-12T18:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nThe implementation of `tf.raw_ops.SparseReshape` can be made to trigger an integral division by 0 exception:\n\n```python\nimport tensorflow as tf\n\ntf.raw_ops.SparseReshape(\n  input_indices = np.ones((1,3)),\n  input_shape = np.array([1,1,0]),\n  new_shape = np.array([1,0]))\n```\n  \nThe [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L176-L181) calls the reshaping functor whenever there is at least an index in the input but does not check that shape of the input or the target shape have both a non-zero number of elements.\n\nThe [reshape functor](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L40-L78) blindly divides by the dimensions of the target shape. Hence, if this is not checked, code will result in a division by 0.\n  \n### Patches\nWe have patched the issue in GitHub commit [4923de56ec94fff7770df259ab7f2288a74feb41](https://github.com/tensorflow/tensorflow/commit/4923de56ec94fff7770df259ab7f2288a74feb41).\n\nThe fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1 as this is the other affected version.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n  \n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.",
  "id": "GHSA-95xm-g58g-3p88",
  "modified": "2024-11-13T16:32:14Z",
  "published": "2021-08-25T14:44:02Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-95xm-g58g-3p88"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-37640"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/4923de56ec94fff7770df259ab7f2288a74feb41"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-553.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-751.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-262.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Integer division by 0 in sparse reshaping"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…