GHSA-XMQ7-7FXM-RR79
Vulnerability from github – Published: 2020-09-25 18:28 – Updated: 2024-10-28 21:23Impact
By controlling the fill argument of tf.strings.as_string, a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a printf call is constructed: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/as_string_op.cc#L68-L74
This can result in unexpected output:
In [1]: tf.strings.as_string(input=[1234], width=6, fill='-')
Out[1]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['1234 '], dtype=object)>
In [2]: tf.strings.as_string(input=[1234], width=6, fill='+')
Out[2]: <tf.Tensor: shape=(1,), dtype=string, numpy=array([' +1234'], dtype=object)>
In [3]: tf.strings.as_string(input=[1234], width=6, fill="h")
Out[3]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['%6d'], dtype=object)>
In [4]: tf.strings.as_string(input=[1234], width=6, fill="d")
Out[4]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['12346d'], dtype=object)>
In [5]: tf.strings.as_string(input=[1234], width=6, fill="o")
Out[5]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['23226d'], dtype=object)>
In [6]: tf.strings.as_string(input=[1234], width=6, fill="x")
Out[6]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['4d26d'], dtype=object)>
In [7]: tf.strings.as_string(input=[1234], width=6, fill="g")
Out[7]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['8.67458e-3116d'], dtype=object)>
In [8]: tf.strings.as_string(input=[1234], width=6, fill="a")
Out[8]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x0.00ff7eebb4d4p-10226d'], dtype=object)>
In [9]: tf.strings.as_string(input=[1234], width=6, fill="c")
Out[9]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['\xd26d'], dtype=object)>
In [10]: tf.strings.as_string(input=[1234], width=6, fill="p")
Out[10]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x4d26d'], dtype=object)>
In [11]: tf.strings.as_string(input=[1234], width=6, fill='m')
Out[11]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['Success6d'], dtype=object)>
However, passing in n or s results in segmentation fault.
Patches
We have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3.
We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "1.15.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.0.0"
},
{
"fixed": "2.0.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.1.0"
},
{
"fixed": "2.1.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.2.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.3.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "1.15.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.0.0"
},
{
"fixed": "2.0.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.1.0"
},
{
"fixed": "2.1.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.2.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.3.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "1.15.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.0.0"
},
{
"fixed": "2.0.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.1.0"
},
{
"fixed": "2.1.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.2.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.3.0"
]
}
],
"aliases": [
"CVE-2020-15203"
],
"database_specific": {
"cwe_ids": [
"CWE-134",
"CWE-20"
],
"github_reviewed": true,
"github_reviewed_at": "2020-09-25T17:34:02Z",
"nvd_published_at": "2020-09-25T19:15:00Z",
"severity": "HIGH"
},
"details": "### Impact\nBy controlling the `fill` argument of [`tf.strings.as_string`](https://www.tensorflow.org/api_docs/python/tf/strings/as_string), a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/as_string_op.cc#L68-L74\n\nThis can result in unexpected output:\n```python\nIn [1]: tf.strings.as_string(input=[1234], width=6, fill=\u0027-\u0027) \nOut[1]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00271234 \u0027], dtype=object)\u003e \nIn [2]: tf.strings.as_string(input=[1234], width=6, fill=\u0027+\u0027) \nOut[2]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027 +1234\u0027], dtype=object)\u003e \nIn [3]: tf.strings.as_string(input=[1234], width=6, fill=\"h\") \nOut[3]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027%6d\u0027], dtype=object)\u003e \nIn [4]: tf.strings.as_string(input=[1234], width=6, fill=\"d\") \nOut[4]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u002712346d\u0027], dtype=object)\u003e \nIn [5]: tf.strings.as_string(input=[1234], width=6, fill=\"o\")\nOut[5]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u002723226d\u0027], dtype=object)\u003e\nIn [6]: tf.strings.as_string(input=[1234], width=6, fill=\"x\")\nOut[6]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00274d26d\u0027], dtype=object)\u003e\nIn [7]: tf.strings.as_string(input=[1234], width=6, fill=\"g\")\nOut[7]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00278.67458e-3116d\u0027], dtype=object)\u003e\nIn [8]: tf.strings.as_string(input=[1234], width=6, fill=\"a\")\nOut[8]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00270x0.00ff7eebb4d4p-10226d\u0027], dtype=object)\u003e\nIn [9]: tf.strings.as_string(input=[1234], width=6, fill=\"c\")\nOut[9]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027\\xd26d\u0027], dtype=object)\u003e\nIn [10]: tf.strings.as_string(input=[1234], width=6, fill=\"p\")\nOut[10]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00270x4d26d\u0027], dtype=object)\u003e\nIn [11]: tf.strings.as_string(input=[1234], width=6, fill=\u0027m\u0027) \nOut[11]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027Success6d\u0027], dtype=object)\u003e\n```\n\nHowever, passing in `n` or `s` results in segmentation fault.\n\n### Patches\nWe have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3.\n\nWe recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.",
"id": "GHSA-xmq7-7fxm-rr79",
"modified": "2024-10-28T21:23:19Z",
"published": "2020-09-25T18:28:37Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2020-15203"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-283.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-318.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-126.yaml"
},
{
"type": "PACKAGE",
"url": "https://github.com/tensorflow/tensorflow"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
},
{
"type": "WEB",
"url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N",
"type": "CVSS_V4"
}
],
"summary": "Denial of Service in Tensorflow"
}
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.