GHSA-XVJM-FVXX-Q3HV
Vulnerability from github – Published: 2021-05-21 14:26 – Updated: 2024-11-13 15:59Impact
An attacker can trigger a denial of service via a CHECK-fail in caused by an integer overflow in constructing a new tensor shape:
import tensorflow as tf
input_layer = 2**60-1
sparse_data = tf.raw_ops.SparseSplit(
split_dim=1,
indices=[(0, 0), (0, 1), (0, 2),
(4, 3), (5, 0), (5, 1)],
values=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
shape=(input_layer, input_layer),
num_split=2,
name=None
)
This is because the implementation builds a dense shape without checking that the dimensions would not result in overflow:
sparse::SparseTensor sparse_tensor;
OP_REQUIRES_OK(context,
sparse::SparseTensor::Create(
input_indices, input_values,
TensorShape(input_shape.vec<int64>()), &sparse_tensor));
The TensorShape constructor uses a CHECK operation which triggers when InitDims returns a non-OK status.
template <class Shape>
TensorShapeBase<Shape>::TensorShapeBase(gtl::ArraySlice<int64> dim_sizes) {
set_tag(REP16);
set_data_type(DT_INVALID);
TF_CHECK_OK(InitDims(dim_sizes));
}
In our scenario, this occurs when adding a dimension from the argument results in overflow:
template <class Shape>
Status TensorShapeBase<Shape>::InitDims(gtl::ArraySlice<int64> dim_sizes) {
...
Status status = Status::OK();
for (int64 s : dim_sizes) {
status.Update(AddDimWithStatus(internal::SubtleMustCopy(s)));
if (!status.ok()) {
return status;
}
}
}
template <class Shape>
Status TensorShapeBase<Shape>::AddDimWithStatus(int64 size) {
...
int64 new_num_elements;
if (kIsPartial && (num_elements() < 0 || size < 0)) {
new_num_elements = -1;
} else {
new_num_elements = MultiplyWithoutOverflow(num_elements(), size);
if (TF_PREDICT_FALSE(new_num_elements < 0)) {
return errors::Internal("Encountered overflow when multiplying ",
num_elements(), " with ", size,
", result: ", new_num_elements);
}
}
...
}
This is a legacy implementation of the constructor and operations should use BuildTensorShapeBase or AddDimWithStatus to prevent CHECK-failures in the presence of overflows.
Patches
We have patched the issue in GitHub commit 4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by researchers from University of Virginia and University of California, Santa Barbara.
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
}
],
"aliases": [
"CVE-2021-29584"
],
"database_specific": {
"cwe_ids": [
"CWE-190"
],
"github_reviewed": true,
"github_reviewed_at": "2021-05-18T17:23:38Z",
"nvd_published_at": "2021-05-14T20:15:00Z",
"severity": "LOW"
},
"details": "### Impact\nAn attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape:\n\n```python\nimport tensorflow as tf\n\ninput_layer = 2**60-1\nsparse_data = tf.raw_ops.SparseSplit(\n split_dim=1, \n indices=[(0, 0), (0, 1), (0, 2), \n (4, 3), (5, 0), (5, 1)],\n values=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],\n shape=(input_layer, input_layer),\n num_split=2,\n name=None\n )\n```\n \nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow:\n\n```cc\nsparse::SparseTensor sparse_tensor;\nOP_REQUIRES_OK(context,\n sparse::SparseTensor::Create(\n input_indices, input_values,\n TensorShape(input_shape.vec\u003cint64\u003e()), \u0026sparse_tensor));\n```\n\nThe [`TensorShape` constructor](https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when [`InitDims`](https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status.\n \n```cc \ntemplate \u003cclass Shape\u003e\nTensorShapeBase\u003cShape\u003e::TensorShapeBase(gtl::ArraySlice\u003cint64\u003e dim_sizes) {\n set_tag(REP16);\n set_data_type(DT_INVALID);\n TF_CHECK_OK(InitDims(dim_sizes));\n}\n```\n\nIn our scenario, this occurs when adding a dimension from the argument results in overflow:\n\n```cc\ntemplate \u003cclass Shape\u003e\nStatus TensorShapeBase\u003cShape\u003e::InitDims(gtl::ArraySlice\u003cint64\u003e dim_sizes) {\n ...\n Status status = Status::OK();\n for (int64 s : dim_sizes) {\n status.Update(AddDimWithStatus(internal::SubtleMustCopy(s)));\n if (!status.ok()) {\n return status;\n }\n }\n}\n\ntemplate \u003cclass Shape\u003e\nStatus TensorShapeBase\u003cShape\u003e::AddDimWithStatus(int64 size) {\n ...\n int64 new_num_elements;\n if (kIsPartial \u0026\u0026 (num_elements() \u003c 0 || size \u003c 0)) {\n new_num_elements = -1;\n } else {\n new_num_elements = MultiplyWithoutOverflow(num_elements(), size);\n if (TF_PREDICT_FALSE(new_num_elements \u003c 0)) {\n return errors::Internal(\"Encountered overflow when multiplying \",\n num_elements(), \" with \", size,\n \", result: \", new_num_elements);\n }\n }\n ...\n}\n```\n\nThis is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows.\n\n### Patches\nWe have patched the issue in GitHub commit [4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60](https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by researchers from University of Virginia and University of California, Santa Barbara.",
"id": "GHSA-xvjm-fvxx-q3hv",
"modified": "2024-11-13T15:59:44Z",
"published": "2021-05-21T14:26:38Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvjm-fvxx-q3hv"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29584"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-512.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-710.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-221.yaml"
},
{
"type": "PACKAGE",
"url": "https://github.com/tensorflow/tensorflow"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
"type": "CVSS_V4"
}
],
"summary": "CHECK-fail due to integer overflow"
}
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.