PYSEC-2021-187

Vulnerability from pysec - Published: 2021-05-14 20:15 - Updated: 2021-08-27 03:22
VLAI?
Details

TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in tf.raw_ops.FractionalAvgPool. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) computes a divisor quantity by dividing two user controlled values. The user controls the values of input_size[i] and pooling_ratio_[i] (via the value.shape() and pooling_ratio arguments). If the value in input_size[i] is smaller than the pooling_ratio_[i], then the floor operation results in output_size[i] being 0. The DCHECK_GT line is a no-op outside of debug mode, so in released versions of TF this does not trigger. Later, these computed values are used as arguments(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) to GeneratePoolingSequence(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). There, the first computation is a division in a modulo operation. Since output_length can be 0, this results in runtime crashing. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

Impacted products
Name purl
tensorflow pkg:pypi/tensorflow

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow",
        "purl": "pkg:pypi/tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "548b5eaf23685d86f722233d8fbc21d0a4aecb96"
            }
          ],
          "repo": "https://github.com/tensorflow/tensorflow",
          "type": "GIT"
        },
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.2.0rc0"
            },
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.3.0rc0"
            },
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.4"
            },
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "0.12.0",
        "0.12.0rc0",
        "0.12.0rc1",
        "0.12.1",
        "1.0.0",
        "1.0.1",
        "1.1.0",
        "1.1.0rc0",
        "1.1.0rc1",
        "1.1.0rc2",
        "1.10.0",
        "1.10.0rc0",
        "1.10.0rc1",
        "1.10.1",
        "1.11.0",
        "1.11.0rc0",
        "1.11.0rc1",
        "1.11.0rc2",
        "1.12.0",
        "1.12.0rc0",
        "1.12.0rc1",
        "1.12.0rc2",
        "1.12.2",
        "1.12.3",
        "1.13.0rc0",
        "1.13.0rc1",
        "1.13.0rc2",
        "1.13.1",
        "1.13.2",
        "1.14.0",
        "1.14.0rc0",
        "1.14.0rc1",
        "1.15.0",
        "1.15.0rc0",
        "1.15.0rc1",
        "1.15.0rc2",
        "1.15.0rc3",
        "1.15.2",
        "1.15.3",
        "1.15.4",
        "1.15.5",
        "1.2.0",
        "1.2.0rc0",
        "1.2.0rc1",
        "1.2.0rc2",
        "1.2.1",
        "1.3.0",
        "1.3.0rc0",
        "1.3.0rc1",
        "1.3.0rc2",
        "1.4.0",
        "1.4.0rc0",
        "1.4.0rc1",
        "1.4.1",
        "1.5.0",
        "1.5.0rc0",
        "1.5.0rc1",
        "1.5.1",
        "1.6.0",
        "1.6.0rc0",
        "1.6.0rc1",
        "1.7.0",
        "1.7.0rc0",
        "1.7.0rc1",
        "1.7.1",
        "1.8.0",
        "1.8.0rc0",
        "1.8.0rc1",
        "1.9.0",
        "1.9.0rc0",
        "1.9.0rc1",
        "1.9.0rc2",
        "2.0.0",
        "2.0.0a0",
        "2.0.0b0",
        "2.0.0b1",
        "2.0.0rc0",
        "2.0.0rc1",
        "2.0.0rc2",
        "2.0.1",
        "2.0.2",
        "2.0.3",
        "2.0.4",
        "2.1.0",
        "2.1.0rc0",
        "2.1.0rc1",
        "2.1.0rc2",
        "2.1.1",
        "2.1.2",
        "2.1.3",
        "2.1.4",
        "2.2.0",
        "2.2.1",
        "2.2.2",
        "2.2.3",
        "2.3.0",
        "2.3.1",
        "2.3.2",
        "2.3.3",
        "2.4.0",
        "2.4.1",
        "2.4.2"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29550",
    "GHSA-f78g-q7r4-9wcv"
  ],
  "details": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.FractionalAvgPool`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) computes a divisor quantity by dividing two user controlled values. The user controls the values of `input_size[i]` and `pooling_ratio_[i]` (via the `value.shape()` and `pooling_ratio` arguments). If the value in `input_size[i]` is smaller than the `pooling_ratio_[i]`, then the floor operation results in `output_size[i]` being 0. The `DCHECK_GT` line is a no-op outside of debug mode, so in released versions of TF this does not trigger. Later, these computed values are used as arguments(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) to `GeneratePoolingSequence`(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). There, the first computation is a division in a modulo operation. Since `output_length` can be 0, this results in runtime crashing. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.",
  "id": "PYSEC-2021-187",
  "modified": "2021-08-27T03:22:30.332227Z",
  "published": "2021-05-14T20:15:00Z",
  "references": [
    {
      "type": "ADVISORY",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f78g-q7r4-9wcv"
    },
    {
      "type": "FIX",
      "url": "https://github.com/tensorflow/tensorflow/commit/548b5eaf23685d86f722233d8fbc21d0a4aecb96"
    }
  ]
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…