PYSEC-2021-508

Vulnerability from pysec - Published: 2021-05-14 20:15 - Updated: 2021-12-09 06:34
VLAI?
Details

TensorFlow is an end-to-end open source platform for machine learning. The implementation of tf.raw_ops.FractionalMaxPoolGrad triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a CHECK condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

Impacted products
Name purl
tensorflow-cpu pkg:pypi/tensorflow-cpu

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu",
        "purl": "pkg:pypi/tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "32fdcbff9d06d010d908fcc4bd4b36eb3ce15925"
            }
          ],
          "repo": "https://github.com/tensorflow/tensorflow",
          "type": "GIT"
        },
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            },
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            },
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            },
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "1.15.0",
        "2.1.0",
        "2.1.1",
        "2.1.2",
        "2.1.3",
        "2.2.0",
        "2.2.1",
        "2.2.2",
        "2.3.0",
        "2.3.1",
        "2.3.2",
        "2.4.0",
        "2.4.1"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29580",
    "GHSA-x8h6-xgqx-jqgp"
  ],
  "details": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.",
  "id": "PYSEC-2021-508",
  "modified": "2021-12-09T06:34:55.778346Z",
  "published": "2021-05-14T20:15:00Z",
  "references": [
    {
      "type": "ADVISORY",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x8h6-xgqx-jqgp"
    },
    {
      "type": "FIX",
      "url": "https://github.com/tensorflow/tensorflow/commit/32fdcbff9d06d010d908fcc4bd4b36eb3ce15925"
    }
  ]
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…