PYSEC-2021-780

Vulnerability from pysec - Published: 2021-08-12 23:15 - Updated: 2021-12-09 06:35
VLAI?
Details

TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using tf.raw_ops.NonMaxSuppressionV5 by triggering a division by 0. The implementation uses a user controlled argument to resize a std::vector. However, as std::vector::resize takes the size argument as a size_t and output_size is an int, there is an implicit conversion to unsigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in CombinedNonMaxSuppression. We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

Impacted products
Name purl
tensorflow-gpu pkg:pypi/tensorflow-gpu

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu",
        "purl": "pkg:pypi/tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d"
            },
            {
              "fixed": "b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58"
            }
          ],
          "repo": "https://github.com/tensorflow/tensorflow",
          "type": "GIT"
        },
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.4"
            },
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.3.0",
        "2.3.1",
        "2.3.2",
        "2.3.3",
        "2.4.0",
        "2.4.1",
        "2.4.2"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-37669",
    "GHSA-vmjw-c2vp-p33c"
  ],
  "details": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.NonMaxSuppressionV5` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/image/non_max_suppression_op.cc#L170-L271) uses a user controlled argument to resize a `std::vector`. However, as `std::vector::resize` takes the size argument as a `size_t` and `output_size` is an `int`, there is an implicit conversion to unsigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in `CombinedNonMaxSuppression`. We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.",
  "id": "PYSEC-2021-780",
  "modified": "2021-12-09T06:35:38.342648Z",
  "published": "2021-08-12T23:15:00Z",
  "references": [
    {
      "type": "ADVISORY",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vmjw-c2vp-p33c"
    },
    {
      "type": "FIX",
      "url": "https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d"
    },
    {
      "type": "FIX",
      "url": "https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58"
    }
  ]
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…