Search criteria

66 vulnerabilities found for vllm by vllm

FKIE_CVE-2025-66448

Vulnerability from fkie_nvd - Published: 2025-12-01 23:15 - Updated: 2025-12-03 17:52
Summary
vLLM is an inference and serving engine for large language models (LLMs). Prior to 0.11.1, vllm has a critical remote code execution vector in a config class named Nemotron_Nano_VL_Config. When vllm loads a model config that contains an auto_map entry, the config class resolves that mapping with get_class_from_dynamic_module(...) and immediately instantiates the returned class. This fetches and executes Python from the remote repository referenced in the auto_map string. Crucially, this happens even when the caller explicitly sets trust_remote_code=False in vllm.transformers_utils.config.get_config. In practice, an attacker can publish a benign-looking frontend repo whose config.json points via auto_map to a separate malicious backend repo; loading the frontend will silently run the backend’s code on the victim host. This vulnerability is fixed in 0.11.1.
Impacted products
Vendor Product Version
vllm vllm *

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "1501709D-1515-4B83-89CB-6F7FD4F81C4D",
              "versionEndExcluding": "0.11.1",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). Prior to 0.11.1, vllm has a critical remote code execution vector in a config class named Nemotron_Nano_VL_Config. When vllm loads a model config that contains an auto_map entry, the config class resolves that mapping with get_class_from_dynamic_module(...) and immediately instantiates the returned class. This fetches and executes Python from the remote repository referenced in the auto_map string. Crucially, this happens even when the caller explicitly sets trust_remote_code=False in vllm.transformers_utils.config.get_config. In practice, an attacker can publish a benign-looking frontend repo whose config.json points via auto_map to a separate malicious backend repo; loading the frontend will silently run the backend\u2019s code on the victim host. This vulnerability is fixed in 0.11.1."
    }
  ],
  "id": "CVE-2025-66448",
  "lastModified": "2025-12-03T17:52:26.280",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2025-12-01T23:15:54.213",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/ffb08379d8870a1a81ba82b72797f196838d0c86"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/28126"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-8fr4-5q9j-m8gm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-94"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-62372

Vulnerability from fkie_nvd - Published: 2025-11-21 02:15 - Updated: 2025-12-04 17:40
Summary
vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, users can crash the vLLM engine serving multimodal models by passing multimodal embedding inputs with correct ndim but incorrect shape (e.g. hidden dimension is wrong), regardless of whether the model is intended to support such inputs (as defined in the Supported Models page). This issue has been patched in version 0.11.1.
Impacted products
Vendor Product Version
vllm vllm *
vllm vllm 0.11.1
vllm vllm 0.11.1

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BA1047E1-ED1E-4685-B699-8CE5B2058D87",
              "versionEndExcluding": "0.11.1",
              "versionStartIncluding": "0.5.5",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:vllm:vllm:0.11.1:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "FEE054E1-1F84-4ACC-894C-D7E3652EF1B1",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:vllm:vllm:0.11.1:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "B05850DF-38FE-439F-9F7A-AA96DA9038CC",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, users can crash the vLLM engine serving multimodal models by passing multimodal embedding inputs with correct ndim but incorrect shape (e.g. hidden dimension is wrong), regardless of whether the model is intended to support such inputs (as defined in the Supported Models page). This issue has been patched in version 0.11.1."
    }
  ],
  "id": "CVE-2025-62372",
  "lastModified": "2025-12-04T17:40:47.150",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ],
    "cvssMetricV40": [
      {
        "cvssData": {
          "Automatable": "NOT_DEFINED",
          "Recovery": "NOT_DEFINED",
          "Safety": "NOT_DEFINED",
          "attackComplexity": "LOW",
          "attackRequirements": "NONE",
          "attackVector": "NETWORK",
          "availabilityRequirement": "NOT_DEFINED",
          "baseScore": 8.3,
          "baseSeverity": "HIGH",
          "confidentialityRequirement": "NOT_DEFINED",
          "exploitMaturity": "NOT_DEFINED",
          "integrityRequirement": "NOT_DEFINED",
          "modifiedAttackComplexity": "NOT_DEFINED",
          "modifiedAttackRequirements": "NOT_DEFINED",
          "modifiedAttackVector": "NOT_DEFINED",
          "modifiedPrivilegesRequired": "NOT_DEFINED",
          "modifiedSubAvailabilityImpact": "NOT_DEFINED",
          "modifiedSubConfidentialityImpact": "NOT_DEFINED",
          "modifiedSubIntegrityImpact": "NOT_DEFINED",
          "modifiedUserInteraction": "NOT_DEFINED",
          "modifiedVulnAvailabilityImpact": "NOT_DEFINED",
          "modifiedVulnConfidentialityImpact": "NOT_DEFINED",
          "modifiedVulnIntegrityImpact": "NOT_DEFINED",
          "privilegesRequired": "LOW",
          "providerUrgency": "NOT_DEFINED",
          "subAvailabilityImpact": "HIGH",
          "subConfidentialityImpact": "NONE",
          "subIntegrityImpact": "NONE",
          "userInteraction": "NONE",
          "valueDensity": "NOT_DEFINED",
          "vectorString": "CVSS:4.0/AV:N/AC:L/AT:N/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:H/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X",
          "version": "4.0",
          "vulnAvailabilityImpact": "HIGH",
          "vulnConfidentialityImpact": "NONE",
          "vulnIntegrityImpact": "NONE",
          "vulnerabilityResponseEffort": "NOT_DEFINED"
        },
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-11-21T02:15:43.393",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/27204"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/6613"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mitigation",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-pmqf-x6x8-p7qw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-129"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-62164

Vulnerability from fkie_nvd - Published: 2025-11-21 02:15 - Updated: 2025-12-04 17:14
Summary
vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1.
Impacted products
Vendor Product Version
vllm vllm *
vllm vllm 0.11.1
vllm vllm 0.11.1

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "257F44B9-5BDF-4A61-B7B9-A901DD438F9C",
              "versionEndExcluding": "0.11.1",
              "versionStartIncluding": "0.10.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:vllm:vllm:0.11.1:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "FEE054E1-1F84-4ACC-894C-D7E3652EF1B1",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:vllm:vllm:0.11.1:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "B05850DF-38FE-439F-9F7A-AA96DA9038CC",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1."
    }
  ],
  "id": "CVE-2025-62164",
  "lastModified": "2025-12-04T17:14:20.630",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-11-21T02:15:43.193",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/27204"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Vendor Advisory",
        "Issue Tracking"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-mrw7-hf4f-83pf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-123"
        },
        {
          "lang": "en",
          "value": "CWE-502"
        },
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-62426

Vulnerability from fkie_nvd - Published: 2025-11-21 02:15 - Updated: 2025-12-04 17:42
Summary
vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, the /v1/chat/completions and /tokenize endpoints allow a chat_template_kwargs request parameter that is used in the code before it is properly validated against the chat template. With the right chat_template_kwargs parameters, it is possible to block processing of the API server for long periods of time, delaying all other requests. This issue has been patched in version 0.11.1.
Impacted products
Vendor Product Version
vllm vllm *
vllm vllm 0.11.1
vllm vllm 0.11.1

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BA1047E1-ED1E-4685-B699-8CE5B2058D87",
              "versionEndExcluding": "0.11.1",
              "versionStartIncluding": "0.5.5",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:vllm:vllm:0.11.1:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "FEE054E1-1F84-4ACC-894C-D7E3652EF1B1",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:vllm:vllm:0.11.1:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "B05850DF-38FE-439F-9F7A-AA96DA9038CC",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, the /v1/chat/completions and /tokenize endpoints allow a chat_template_kwargs request parameter that is used in the code before it is properly validated against the chat template. With the right chat_template_kwargs parameters, it is possible to block processing of the API server for long periods of time, delaying all other requests. This issue has been patched in version 0.11.1."
    }
  ],
  "id": "CVE-2025-62426",
  "lastModified": "2025-12-04T17:42:10.913",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-11-21T02:15:43.570",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Product"
      ],
      "url": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/chat_utils.py#L1602-L1610"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Product"
      ],
      "url": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/openai/serving_engine.py#L809-L814"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/3ada34f9cb4d1af763fdfa3b481862a93eb6bd2b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/27205"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-69j4-grxj-j64p"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-770"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-59425

Vulnerability from fkie_nvd - Published: 2025-10-07 14:15 - Updated: 2025-10-16 18:02
Summary
vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM's built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue.
Impacted products
Vendor Product Version
vllm vllm *
vllm vllm 0.11.0

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "99A24E23-769D-4DB8-BF37-EEC71EE83630",
              "versionEndExcluding": "0.11.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:vllm:vllm:0.11.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "46639D64-5C28-44F3-AE25-9212114AFC8E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM\u0027s built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue."
    }
  ],
  "id": "CVE-2025-59425",
  "lastModified": "2025-10-16T18:02:09.260",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-10-07T14:15:38.950",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Product"
      ],
      "url": "https://github.com/vllm-project/vllm/blob/4b946d693e0af15740e9ca9c0e059d5f333b1083/vllm/entrypoints/openai/api_server.py#L1270-L1274"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/ee10d7e6ff5875386c7f136ce8b5f525c8fcef48"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes"
      ],
      "url": "https://github.com/vllm-project/vllm/releases/tag/v0.11.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-wr9h-g72x-mwhm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-385"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-48956

Vulnerability from fkie_nvd - Published: 2025-08-21 15:15 - Updated: 2025-10-09 18:04
Summary
vLLM is an inference and serving engine for large language models (LLMs). From 0.1.0 to before 0.10.1.1, a Denial of Service (DoS) vulnerability can be triggered by sending a single HTTP GET request with an extremely large header to an HTTP endpoint. This results in server memory exhaustion, potentially leading to a crash or unresponsiveness. The attack does not require authentication, making it exploitable by any remote user. This vulnerability is fixed in 0.10.1.1.
Impacted products
Vendor Product Version
vllm vllm *

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "1C8A1151-E1D6-4DA9-B229-DB4AF9D7F027",
              "versionEndExcluding": "0.10.1.1",
              "versionStartIncluding": "0.1.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). From 0.1.0 to before 0.10.1.1, a Denial of Service (DoS) vulnerability can be triggered by sending a single HTTP GET request with an extremely large header to an HTTP endpoint. This results in server memory exhaustion, potentially leading to a crash or unresponsiveness. The attack does not require authentication, making it exploitable by any remote user. This vulnerability is fixed in 0.10.1.1."
    },
    {
      "lang": "es",
      "value": "vLLM es un motor de inferencia y servicio para modelos de lenguaje grandes (LLM). Desde la versi\u00f3n 0.1.0 hasta versiones anteriores a la 0.10.1.1, se pod\u00eda activar una vulnerabilidad de denegaci\u00f3n de servicio (DoS) al enviar una sola solicitud HTTP GET con un encabezado extremadamente grande a un endpoint HTTP. Esto provocaba el agotamiento de la memoria del servidor, lo que podr\u00eda provocar un bloqueo o la falta de respuesta. El ataque no requiere autenticaci\u00f3n, por lo que cualquier usuario remoto puede explotarlo. Esta vulnerabilidad se corrigi\u00f3 en la versi\u00f3n 0.10.1.1."
    }
  ],
  "id": "CVE-2025-48956",
  "lastModified": "2025-10-09T18:04:53.383",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-08-21T15:15:32.230",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/d8b736f913a59117803d6701521d2e4861701944"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/23267"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-rxc4-3w6r-4v47"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-400"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-48944

Vulnerability from fkie_nvd - Published: 2025-05-30 19:15 - Updated: 2025-07-01 20:42
Summary
vLLM is an inference and serving engine for large language models (LLMs). In version 0.8.0 up to but excluding 0.9.0, the vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the "pattern" and "type" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted. Version 0.9.0 fixes the issue.
Impacted products
Vendor Product Version
vllm vllm *

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8E26EB9F-426B-4A73-B8CA-2D9F3727AF2C",
              "versionEndExcluding": "0.9.0",
              "versionStartIncluding": "0.8.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). In version 0.8.0 up to but excluding 0.9.0, the vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the \"pattern\" and \"type\" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted. Version 0.9.0 fixes the issue."
    },
    {
      "lang": "es",
      "value": "vLLM es un motor de inferencia y servicio para modelos de lenguaje grandes (LLM). Desde la versi\u00f3n 0.8.0 hasta la 0.9.0 (excluyendo esta \u00faltima), el backend de vLLM utilizado con el endpoint de OpenAPI /v1/chat/completions no valida entradas inesperadas o incorrectas en los campos \"patr\u00f3n\" y \"tipo\" al invocar la funcionalidad de herramientas. Estas entradas no se validan antes de compilarse o analizarse, lo que provoca un bloqueo del trabajador de inferencia con una sola solicitud. El trabajador permanece inactivo hasta que se reinicia. La versi\u00f3n 0.9.0 corrige este problema."
    }
  ],
  "id": "CVE-2025-48944",
  "lastModified": "2025-07-01T20:42:13.840",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-05-30T19:15:30.433",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/17623"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-vrq3-r879-7m65"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-48943

Vulnerability from fkie_nvd - Published: 2025-05-30 19:15 - Updated: 2025-06-24 17:40
Summary
vLLM is an inference and serving engine for large language models (LLMs). Version 0.8.0 up to but excluding 0.9.0 have a Denial of Service (ReDoS) that causes the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg/CVE-2025-48942, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue.
Impacted products
Vendor Product Version
vllm vllm *

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8E26EB9F-426B-4A73-B8CA-2D9F3727AF2C",
              "versionEndExcluding": "0.9.0",
              "versionStartIncluding": "0.8.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). Version 0.8.0 up to but excluding 0.9.0 have a Denial of Service (ReDoS) that causes the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg/CVE-2025-48942, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue."
    },
    {
      "lang": "es",
      "value": "vLLM es un motor de inferencia y servicio para modelos de lenguaje grandes (LLM). Las versiones 0.8.0 y 0.9.0, excepto esta, presentan una vulnerabilidad de denegaci\u00f3n de servicio (ReDoS) que provoca el bloqueo del servidor vLLM si se proporciona una expresi\u00f3n regular no v\u00e1lida al usar la salida estructurada. Esta vulnerabilidad es similar a GHSA-6qc9-v4r8-22xg/CVE-2025-48942, pero para expresiones regulares en lugar de un esquema JSON. La versi\u00f3n 0.9.0 corrige el problema."
    }
  ],
  "id": "CVE-2025-48943",
  "lastModified": "2025-06-24T17:40:52.923",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-05-30T19:15:30.280",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking"
      ],
      "url": "https://github.com/vllm-project/vllm/issues/17313"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/17623"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-9hcf-v7m4-6m2j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-248"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-48942

Vulnerability from fkie_nvd - Published: 2025-05-30 19:15 - Updated: 2025-06-24 17:44
Summary
vLLM is an inference and serving engine for large language models (LLMs). In versions 0.8.0 up to but excluding 0.9.0, hitting the /v1/completions API with a invalid json_schema as a Guided Param kills the vllm server. This vulnerability is similar GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue.
Impacted products
Vendor Product Version
vllm vllm *

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8E26EB9F-426B-4A73-B8CA-2D9F3727AF2C",
              "versionEndExcluding": "0.9.0",
              "versionStartIncluding": "0.8.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM is an inference and serving engine for large language models (LLMs). In versions 0.8.0 up to but excluding 0.9.0, hitting the  /v1/completions API with a invalid json_schema as a Guided Param kills the vllm server. This vulnerability is similar GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue."
    },
    {
      "lang": "es",
      "value": "vLLM es un motor de inferencia y servicio para modelos de lenguaje grandes (LLM). En las versiones 0.8.0 y 0.9.0, excepto esta, al acceder a la API /v1/completions con un json_schema no v\u00e1lido como par\u00e1metro guiado, se desactiva el servidor vllm. Esta vulnerabilidad es similar a la vulnerabilidad GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, pero para expresiones regulares en lugar de un esquema JSON. La versi\u00f3n 0.9.0 corrige el problema."
    }
  ],
  "id": "CVE-2025-48942",
  "lastModified": "2025-06-24T17:44:47.737",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-05-30T19:15:30.130",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking"
      ],
      "url": "https://github.com/vllm-project/vllm/issues/17248"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/17623"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-6qc9-v4r8-22xg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-248"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

FKIE_CVE-2025-48887

Vulnerability from fkie_nvd - Published: 2025-05-30 18:15 - Updated: 2025-06-19 00:55
Summary
vLLM, an inference and serving engine for large language models (LLMs), has a Regular Expression Denial of Service (ReDoS) vulnerability in the file `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` of versions 0.6.4 up to but excluding 0.9.0. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable. The pattern contains multiple nested quantifiers, optional groups, and inner repetitions which make it vulnerable to catastrophic backtracking. Version 0.9.0 contains a patch for the issue.
Impacted products
Vendor Product Version
vllm vllm *

{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:vllm:vllm:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "18A93B72-AD3E-46D7-8948-E0765D4A7CB1",
              "versionEndExcluding": "0.9.0",
              "versionStartIncluding": "0.6.4",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "vLLM, an inference and serving engine for large language models (LLMs), has a Regular Expression Denial of Service (ReDoS) vulnerability in the file `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` of versions 0.6.4 up to but excluding 0.9.0. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable. The pattern contains multiple nested quantifiers, optional groups, and inner repetitions which make it vulnerable to catastrophic backtracking. Version 0.9.0 contains a patch for the issue."
    },
    {
      "lang": "es",
      "value": "vLLM, un motor de inferencia y servicio para modelos de lenguaje grandes (LLM), presenta una vulnerabilidad de denegaci\u00f3n de servicio por expresi\u00f3n regular (ReDoS) en el archivo `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` de las versiones 0.6.4 a 0.9.0, excepto esta \u00faltima. La causa principal es el uso de una expresi\u00f3n regular anidada y altamente compleja para la detecci\u00f3n de llamadas a herramientas, que un atacante puede explotar para causar una degradaci\u00f3n grave del rendimiento o inhabilitar el servicio. El patr\u00f3n contiene m\u00faltiples cuantificadores anidados, grupos opcionales y repeticiones internas, lo que lo hace vulnerable a un retroceso catastr\u00f3fico. La versi\u00f3n 0.9.0 incluye un parche para este problema."
    }
  ],
  "id": "CVE-2025-48887",
  "lastModified": "2025-06-19T00:55:27.710",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2025-05-30T18:15:32.500",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/commit/4fc1bf813ad80172c1db31264beaef7d93fe0601"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Patch"
      ],
      "url": "https://github.com/vllm-project/vllm/pull/18454"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-w6q7-j642-7c25"
    },
    {
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "tags": [
        "Exploit",
        "Vendor Advisory"
      ],
      "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-w6q7-j642-7c25"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-1333"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

CVE-2025-66448 (GCVE-0-2025-66448)

Vulnerability from cvelistv5 – Published: 2025-12-01 22:45 – Updated: 2025-12-02 14:14
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). Prior to 0.11.1, vllm has a critical remote code execution vector in a config class named Nemotron_Nano_VL_Config. When vllm loads a model config that contains an auto_map entry, the config class resolves that mapping with get_class_from_dynamic_module(...) and immediately instantiates the returned class. This fetches and executes Python from the remote repository referenced in the auto_map string. Crucially, this happens even when the caller explicitly sets trust_remote_code=False in vllm.transformers_utils.config.get_config. In practice, an attacker can publish a benign-looking frontend repo whose config.json points via auto_map to a separate malicious backend repo; loading the frontend will silently run the backend’s code on the victim host. This vulnerability is fixed in 0.11.1.
CWE
  • CWE-94 - Improper Control of Generation of Code ('Code Injection')
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: < 0.11.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-66448",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-12-02T14:14:49.921511Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-12-02T14:14:58.324Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 0.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). Prior to 0.11.1, vllm has a critical remote code execution vector in a config class named Nemotron_Nano_VL_Config. When vllm loads a model config that contains an auto_map entry, the config class resolves that mapping with get_class_from_dynamic_module(...) and immediately instantiates the returned class. This fetches and executes Python from the remote repository referenced in the auto_map string. Crucially, this happens even when the caller explicitly sets trust_remote_code=False in vllm.transformers_utils.config.get_config. In practice, an attacker can publish a benign-looking frontend repo whose config.json points via auto_map to a separate malicious backend repo; loading the frontend will silently run the backend\u2019s code on the victim host. This vulnerability is fixed in 0.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-94",
              "description": "CWE-94: Improper Control of Generation of Code (\u0027Code Injection\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-12-01T22:45:42.566Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-8fr4-5q9j-m8gm",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-8fr4-5q9j-m8gm"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/28126",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/28126"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/ffb08379d8870a1a81ba82b72797f196838d0c86",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/ffb08379d8870a1a81ba82b72797f196838d0c86"
        }
      ],
      "source": {
        "advisory": "GHSA-8fr4-5q9j-m8gm",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM vulnerable to remote code execution via transformers_utils/get_config"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-66448",
    "datePublished": "2025-12-01T22:45:42.566Z",
    "dateReserved": "2025-12-01T18:22:06.865Z",
    "dateUpdated": "2025-12-02T14:14:58.324Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-62372 (GCVE-0-2025-62372)

Vulnerability from cvelistv5 – Published: 2025-11-21 01:22 – Updated: 2025-11-24 18:11
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, users can crash the vLLM engine serving multimodal models by passing multimodal embedding inputs with correct ndim but incorrect shape (e.g. hidden dimension is wrong), regardless of whether the model is intended to support such inputs (as defined in the Supported Models page). This issue has been patched in version 0.11.1.
CWE
  • CWE-129 - Improper Validation of Array Index
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.5.5, < 0.11.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-62372",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-11-24T17:07:55.989854Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-11-24T18:11:59.207Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.5.5, \u003c 0.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, users can crash the vLLM engine serving multimodal models by passing multimodal embedding inputs with correct ndim but incorrect shape (e.g. hidden dimension is wrong), regardless of whether the model is intended to support such inputs (as defined in the Supported Models page). This issue has been patched in version 0.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV4_0": {
            "attackComplexity": "LOW",
            "attackRequirements": "NONE",
            "attackVector": "NETWORK",
            "baseScore": 8.3,
            "baseSeverity": "HIGH",
            "privilegesRequired": "LOW",
            "subAvailabilityImpact": "HIGH",
            "subConfidentialityImpact": "NONE",
            "subIntegrityImpact": "NONE",
            "userInteraction": "NONE",
            "vectorString": "CVSS:4.0/AV:N/AC:L/AT:N/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:H",
            "version": "4.0",
            "vulnAvailabilityImpact": "HIGH",
            "vulnConfidentialityImpact": "NONE",
            "vulnIntegrityImpact": "NONE"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-129",
              "description": "CWE-129: Improper Validation of Array Index",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-11-21T01:22:37.121Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-pmqf-x6x8-p7qw",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-pmqf-x6x8-p7qw"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/27204",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/27204"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/6613",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/6613"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b"
        }
      ],
      "source": {
        "advisory": "GHSA-pmqf-x6x8-p7qw",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM vulnerable to DoS with incorrect shape of multimodal embedding inputs"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-62372",
    "datePublished": "2025-11-21T01:22:37.121Z",
    "dateReserved": "2025-10-10T14:22:48.204Z",
    "dateUpdated": "2025-11-24T18:11:59.207Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-62426 (GCVE-0-2025-62426)

Vulnerability from cvelistv5 – Published: 2025-11-21 01:21 – Updated: 2025-11-24 18:12
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, the /v1/chat/completions and /tokenize endpoints allow a chat_template_kwargs request parameter that is used in the code before it is properly validated against the chat template. With the right chat_template_kwargs parameters, it is possible to block processing of the API server for long periods of time, delaying all other requests. This issue has been patched in version 0.11.1.
CWE
  • CWE-770 - Allocation of Resources Without Limits or Throttling
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.5.5, < 0.11.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-62426",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-11-24T17:12:00.809982Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-11-24T18:12:23.183Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.5.5, \u003c 0.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, the /v1/chat/completions and /tokenize endpoints allow a chat_template_kwargs request parameter that is used in the code before it is properly validated against the chat template. With the right chat_template_kwargs parameters, it is possible to block processing of the API server for long periods of time, delaying all other requests. This issue has been patched in version 0.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-770",
              "description": "CWE-770: Allocation of Resources Without Limits or Throttling",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-11-21T01:21:29.546Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-69j4-grxj-j64p",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-69j4-grxj-j64p"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/27205",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/27205"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/3ada34f9cb4d1af763fdfa3b481862a93eb6bd2b",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/3ada34f9cb4d1af763fdfa3b481862a93eb6bd2b"
        },
        {
          "name": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/chat_utils.py#L1602-L1610",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/chat_utils.py#L1602-L1610"
        },
        {
          "name": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/openai/serving_engine.py#L809-L814",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/openai/serving_engine.py#L809-L814"
        }
      ],
      "source": {
        "advisory": "GHSA-69j4-grxj-j64p",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM vulnerable to DoS via large Chat Completion or Tokenization requests with specially crafted `chat_template_kwargs`"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-62426",
    "datePublished": "2025-11-21T01:21:29.546Z",
    "dateReserved": "2025-10-13T16:26:12.180Z",
    "dateUpdated": "2025-11-24T18:12:23.183Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-62164 (GCVE-0-2025-62164)

Vulnerability from cvelistv5 – Published: 2025-11-21 01:18 – Updated: 2025-11-24 18:12
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1.
CWE
  • CWE-20 - Improper Input Validation
  • CWE-123 - Write-what-where Condition
  • CWE-502 - Deserialization of Untrusted Data
  • CWE-787 - Out-of-bounds Write
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.10.2, < 0.11.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-62164",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-11-24T17:15:13.097938Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-11-24T18:12:44.195Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.10.2, \u003c 0.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-123",
              "description": "CWE-123: Write-what-where Condition",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502: Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-11-21T01:18:38.803Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-mrw7-hf4f-83pf",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-mrw7-hf4f-83pf"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/27204",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/27204"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b"
        }
      ],
      "source": {
        "advisory": "GHSA-mrw7-hf4f-83pf",
        "discovery": "UNKNOWN"
      },
      "title": "VLLM deserialization vulnerability leading to DoS and potential RCE"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-62164",
    "datePublished": "2025-11-21T01:18:38.803Z",
    "dateReserved": "2025-10-07T16:12:03.425Z",
    "dateUpdated": "2025-11-24T18:12:44.195Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-59425 (GCVE-0-2025-59425)

Vulnerability from cvelistv5 – Published: 2025-10-07 14:06 – Updated: 2025-10-07 15:28
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM's built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue.
CWE
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: < 0.11.0rc2
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-59425",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-10-07T14:32:10.348830Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-10-07T15:28:10.303Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 0.11.0rc2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM\u0027s built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-385",
              "description": "CWE-385: Covert Timing Channel",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-07T14:06:49.042Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-wr9h-g72x-mwhm",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-wr9h-g72x-mwhm"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/ee10d7e6ff5875386c7f136ce8b5f525c8fcef48",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/ee10d7e6ff5875386c7f136ce8b5f525c8fcef48"
        },
        {
          "name": "https://github.com/vllm-project/vllm/blob/4b946d693e0af15740e9ca9c0e059d5f333b1083/vllm/entrypoints/openai/api_server.py#L1270-L1274",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/blob/4b946d693e0af15740e9ca9c0e059d5f333b1083/vllm/entrypoints/openai/api_server.py#L1270-L1274"
        },
        {
          "name": "https://github.com/vllm-project/vllm/releases/tag/v0.11.0",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/releases/tag/v0.11.0"
        }
      ],
      "source": {
        "advisory": "GHSA-wr9h-g72x-mwhm",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM vulnerable to timing attack at bearer auth"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-59425",
    "datePublished": "2025-10-07T14:06:49.042Z",
    "dateReserved": "2025-09-15T19:13:16.905Z",
    "dateUpdated": "2025-10-07T15:28:10.303Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48956 (GCVE-0-2025-48956)

Vulnerability from cvelistv5 – Published: 2025-08-21 14:41 – Updated: 2025-08-21 15:02
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). From 0.1.0 to before 0.10.1.1, a Denial of Service (DoS) vulnerability can be triggered by sending a single HTTP GET request with an extremely large header to an HTTP endpoint. This results in server memory exhaustion, potentially leading to a crash or unresponsiveness. The attack does not require authentication, making it exploitable by any remote user. This vulnerability is fixed in 0.10.1.1.
CWE
  • CWE-400 - Uncontrolled Resource Consumption
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.1.0, < 0.10.1.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48956",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-08-21T15:01:51.159829Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-08-21T15:02:09.023Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.1.0, \u003c 0.10.1.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). From 0.1.0 to before 0.10.1.1, a Denial of Service (DoS) vulnerability can be triggered by sending a single HTTP GET request with an extremely large header to an HTTP endpoint. This results in server memory exhaustion, potentially leading to a crash or unresponsiveness. The attack does not require authentication, making it exploitable by any remote user. This vulnerability is fixed in 0.10.1.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-400",
              "description": "CWE-400: Uncontrolled Resource Consumption",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-08-21T14:41:03.889Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-rxc4-3w6r-4v47",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-rxc4-3w6r-4v47"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/23267",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/23267"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/d8b736f913a59117803d6701521d2e4861701944",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/d8b736f913a59117803d6701521d2e4861701944"
        }
      ],
      "source": {
        "advisory": "GHSA-rxc4-3w6r-4v47",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM API endpoints vulnerable to Denial of Service Attacks"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48956",
    "datePublished": "2025-08-21T14:41:03.889Z",
    "dateReserved": "2025-05-28T18:49:07.585Z",
    "dateUpdated": "2025-08-21T15:02:09.023Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48944 (GCVE-0-2025-48944)

Vulnerability from cvelistv5 – Published: 2025-05-30 18:38 – Updated: 2025-05-30 18:56
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). In version 0.8.0 up to but excluding 0.9.0, the vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the "pattern" and "type" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted. Version 0.9.0 fixes the issue.
CWE
  • CWE-20 - Improper Input Validation
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.8.0, < 0.9.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48944",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-30T18:56:49.162584Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-30T18:56:56.406Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.8.0, \u003c 0.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). In version 0.8.0 up to but excluding 0.9.0, the vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the \"pattern\" and \"type\" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted. Version 0.9.0 fixes the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-30T18:38:45.505Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-vrq3-r879-7m65",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-vrq3-r879-7m65"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/17623",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/17623"
        }
      ],
      "source": {
        "advisory": "GHSA-vrq3-r879-7m65",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM Tool Schema allows DoS via Malformed pattern and type Fields"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48944",
    "datePublished": "2025-05-30T18:38:45.505Z",
    "dateReserved": "2025-05-28T18:49:07.582Z",
    "dateUpdated": "2025-05-30T18:56:56.406Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48943 (GCVE-0-2025-48943)

Vulnerability from cvelistv5 – Published: 2025-05-30 18:36 – Updated: 2025-05-30 18:56
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). Version 0.8.0 up to but excluding 0.9.0 have a Denial of Service (ReDoS) that causes the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg/CVE-2025-48942, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue.
CWE
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.8.0, < 0.9.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48943",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-30T18:54:23.948239Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-30T18:56:18.715Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.8.0, \u003c 0.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). Version 0.8.0 up to but excluding 0.9.0 have a Denial of Service (ReDoS) that causes the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg/CVE-2025-48942, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-248",
              "description": "CWE-248: Uncaught Exception",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-30T18:37:17.548Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-9hcf-v7m4-6m2j",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-9hcf-v7m4-6m2j"
        },
        {
          "name": "https://github.com/vllm-project/vllm/issues/17313",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/issues/17313"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/17623",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/17623"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff"
        }
      ],
      "source": {
        "advisory": "GHSA-9hcf-v7m4-6m2j",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM allows clients to crash the openai server with invalid regex"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48943",
    "datePublished": "2025-05-30T18:36:01.519Z",
    "dateReserved": "2025-05-28T18:49:07.582Z",
    "dateUpdated": "2025-05-30T18:56:18.715Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48942 (GCVE-0-2025-48942)

Vulnerability from cvelistv5 – Published: 2025-05-30 18:33 – Updated: 2025-05-30 20:37
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). In versions 0.8.0 up to but excluding 0.9.0, hitting the /v1/completions API with a invalid json_schema as a Guided Param kills the vllm server. This vulnerability is similar GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue.
CWE
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.8.0, < 0.9.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48942",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-30T20:36:50.679547Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-30T20:37:06.015Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.8.0, \u003c 0.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). In versions 0.8.0 up to but excluding 0.9.0, hitting the  /v1/completions API with a invalid json_schema as a Guided Param kills the vllm server. This vulnerability is similar GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-248",
              "description": "CWE-248: Uncaught Exception",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-30T18:37:10.641Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-6qc9-v4r8-22xg",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-6qc9-v4r8-22xg"
        },
        {
          "name": "https://github.com/vllm-project/vllm/issues/17248",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/issues/17248"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/17623",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/17623"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff"
        }
      ],
      "source": {
        "advisory": "GHSA-6qc9-v4r8-22xg",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM DOS: Remotely kill vllm over http with invalid JSON schema"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48942",
    "datePublished": "2025-05-30T18:33:40.488Z",
    "dateReserved": "2025-05-28T18:49:07.581Z",
    "dateUpdated": "2025-05-30T20:37:06.015Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48887 (GCVE-0-2025-48887)

Vulnerability from cvelistv5 – Published: 2025-05-30 17:36 – Updated: 2025-05-30 17:58
VLAI?
Summary
vLLM, an inference and serving engine for large language models (LLMs), has a Regular Expression Denial of Service (ReDoS) vulnerability in the file `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` of versions 0.6.4 up to but excluding 0.9.0. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable. The pattern contains multiple nested quantifiers, optional groups, and inner repetitions which make it vulnerable to catastrophic backtracking. Version 0.9.0 contains a patch for the issue.
CWE
  • CWE-1333 - Inefficient Regular Expression Complexity
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.6.4, < 0.9.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48887",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-30T17:58:00.784274Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-30T17:58:23.074Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "references": [
          {
            "tags": [
              "exploit"
            ],
            "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-w6q7-j642-7c25"
          }
        ],
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.6.4, \u003c 0.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM, an inference and serving engine for large language models (LLMs), has a Regular Expression Denial of Service (ReDoS) vulnerability in the file `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` of versions 0.6.4 up to but excluding 0.9.0. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable. The pattern contains multiple nested quantifiers, optional groups, and inner repetitions which make it vulnerable to catastrophic backtracking. Version 0.9.0 contains a patch for the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-1333",
              "description": "CWE-1333: Inefficient Regular Expression Complexity",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-30T17:36:16.716Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-w6q7-j642-7c25",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-w6q7-j642-7c25"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/18454",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/18454"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/4fc1bf813ad80172c1db31264beaef7d93fe0601",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/4fc1bf813ad80172c1db31264beaef7d93fe0601"
        }
      ],
      "source": {
        "advisory": "GHSA-w6q7-j642-7c25",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM has a Regular Expression Denial of Service (ReDoS, Exponential Complexity) Vulnerability in `pythonic_tool_parser.py`"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48887",
    "datePublished": "2025-05-30T17:36:16.716Z",
    "dateReserved": "2025-05-27T20:14:34.297Z",
    "dateUpdated": "2025-05-30T17:58:23.074Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-66448 (GCVE-0-2025-66448)

Vulnerability from nvd – Published: 2025-12-01 22:45 – Updated: 2025-12-02 14:14
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). Prior to 0.11.1, vllm has a critical remote code execution vector in a config class named Nemotron_Nano_VL_Config. When vllm loads a model config that contains an auto_map entry, the config class resolves that mapping with get_class_from_dynamic_module(...) and immediately instantiates the returned class. This fetches and executes Python from the remote repository referenced in the auto_map string. Crucially, this happens even when the caller explicitly sets trust_remote_code=False in vllm.transformers_utils.config.get_config. In practice, an attacker can publish a benign-looking frontend repo whose config.json points via auto_map to a separate malicious backend repo; loading the frontend will silently run the backend’s code on the victim host. This vulnerability is fixed in 0.11.1.
CWE
  • CWE-94 - Improper Control of Generation of Code ('Code Injection')
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: < 0.11.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-66448",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-12-02T14:14:49.921511Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-12-02T14:14:58.324Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 0.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). Prior to 0.11.1, vllm has a critical remote code execution vector in a config class named Nemotron_Nano_VL_Config. When vllm loads a model config that contains an auto_map entry, the config class resolves that mapping with get_class_from_dynamic_module(...) and immediately instantiates the returned class. This fetches and executes Python from the remote repository referenced in the auto_map string. Crucially, this happens even when the caller explicitly sets trust_remote_code=False in vllm.transformers_utils.config.get_config. In practice, an attacker can publish a benign-looking frontend repo whose config.json points via auto_map to a separate malicious backend repo; loading the frontend will silently run the backend\u2019s code on the victim host. This vulnerability is fixed in 0.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-94",
              "description": "CWE-94: Improper Control of Generation of Code (\u0027Code Injection\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-12-01T22:45:42.566Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-8fr4-5q9j-m8gm",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-8fr4-5q9j-m8gm"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/28126",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/28126"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/ffb08379d8870a1a81ba82b72797f196838d0c86",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/ffb08379d8870a1a81ba82b72797f196838d0c86"
        }
      ],
      "source": {
        "advisory": "GHSA-8fr4-5q9j-m8gm",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM vulnerable to remote code execution via transformers_utils/get_config"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-66448",
    "datePublished": "2025-12-01T22:45:42.566Z",
    "dateReserved": "2025-12-01T18:22:06.865Z",
    "dateUpdated": "2025-12-02T14:14:58.324Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-62372 (GCVE-0-2025-62372)

Vulnerability from nvd – Published: 2025-11-21 01:22 – Updated: 2025-11-24 18:11
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, users can crash the vLLM engine serving multimodal models by passing multimodal embedding inputs with correct ndim but incorrect shape (e.g. hidden dimension is wrong), regardless of whether the model is intended to support such inputs (as defined in the Supported Models page). This issue has been patched in version 0.11.1.
CWE
  • CWE-129 - Improper Validation of Array Index
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.5.5, < 0.11.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-62372",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-11-24T17:07:55.989854Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-11-24T18:11:59.207Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.5.5, \u003c 0.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, users can crash the vLLM engine serving multimodal models by passing multimodal embedding inputs with correct ndim but incorrect shape (e.g. hidden dimension is wrong), regardless of whether the model is intended to support such inputs (as defined in the Supported Models page). This issue has been patched in version 0.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV4_0": {
            "attackComplexity": "LOW",
            "attackRequirements": "NONE",
            "attackVector": "NETWORK",
            "baseScore": 8.3,
            "baseSeverity": "HIGH",
            "privilegesRequired": "LOW",
            "subAvailabilityImpact": "HIGH",
            "subConfidentialityImpact": "NONE",
            "subIntegrityImpact": "NONE",
            "userInteraction": "NONE",
            "vectorString": "CVSS:4.0/AV:N/AC:L/AT:N/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:H",
            "version": "4.0",
            "vulnAvailabilityImpact": "HIGH",
            "vulnConfidentialityImpact": "NONE",
            "vulnIntegrityImpact": "NONE"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-129",
              "description": "CWE-129: Improper Validation of Array Index",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-11-21T01:22:37.121Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-pmqf-x6x8-p7qw",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-pmqf-x6x8-p7qw"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/27204",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/27204"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/6613",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/6613"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b"
        }
      ],
      "source": {
        "advisory": "GHSA-pmqf-x6x8-p7qw",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM vulnerable to DoS with incorrect shape of multimodal embedding inputs"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-62372",
    "datePublished": "2025-11-21T01:22:37.121Z",
    "dateReserved": "2025-10-10T14:22:48.204Z",
    "dateUpdated": "2025-11-24T18:11:59.207Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-62426 (GCVE-0-2025-62426)

Vulnerability from nvd – Published: 2025-11-21 01:21 – Updated: 2025-11-24 18:12
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, the /v1/chat/completions and /tokenize endpoints allow a chat_template_kwargs request parameter that is used in the code before it is properly validated against the chat template. With the right chat_template_kwargs parameters, it is possible to block processing of the API server for long periods of time, delaying all other requests. This issue has been patched in version 0.11.1.
CWE
  • CWE-770 - Allocation of Resources Without Limits or Throttling
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.5.5, < 0.11.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-62426",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-11-24T17:12:00.809982Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-11-24T18:12:23.183Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.5.5, \u003c 0.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). From version 0.5.5 to before 0.11.1, the /v1/chat/completions and /tokenize endpoints allow a chat_template_kwargs request parameter that is used in the code before it is properly validated against the chat template. With the right chat_template_kwargs parameters, it is possible to block processing of the API server for long periods of time, delaying all other requests. This issue has been patched in version 0.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-770",
              "description": "CWE-770: Allocation of Resources Without Limits or Throttling",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-11-21T01:21:29.546Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-69j4-grxj-j64p",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-69j4-grxj-j64p"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/27205",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/27205"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/3ada34f9cb4d1af763fdfa3b481862a93eb6bd2b",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/3ada34f9cb4d1af763fdfa3b481862a93eb6bd2b"
        },
        {
          "name": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/chat_utils.py#L1602-L1610",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/chat_utils.py#L1602-L1610"
        },
        {
          "name": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/openai/serving_engine.py#L809-L814",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/blob/2a6dc67eb520ddb9c4138d8b35ed6fe6226997fb/vllm/entrypoints/openai/serving_engine.py#L809-L814"
        }
      ],
      "source": {
        "advisory": "GHSA-69j4-grxj-j64p",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM vulnerable to DoS via large Chat Completion or Tokenization requests with specially crafted `chat_template_kwargs`"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-62426",
    "datePublished": "2025-11-21T01:21:29.546Z",
    "dateReserved": "2025-10-13T16:26:12.180Z",
    "dateUpdated": "2025-11-24T18:12:23.183Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-62164 (GCVE-0-2025-62164)

Vulnerability from nvd – Published: 2025-11-21 01:18 – Updated: 2025-11-24 18:12
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1.
CWE
  • CWE-20 - Improper Input Validation
  • CWE-123 - Write-what-where Condition
  • CWE-502 - Deserialization of Untrusted Data
  • CWE-787 - Out-of-bounds Write
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.10.2, < 0.11.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-62164",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-11-24T17:15:13.097938Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-11-24T18:12:44.195Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.10.2, \u003c 0.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-123",
              "description": "CWE-123: Write-what-where Condition",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502: Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-11-21T01:18:38.803Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-mrw7-hf4f-83pf",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-mrw7-hf4f-83pf"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/27204",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/27204"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/58fab50d82838d5014f4a14d991fdb9352c9c84b"
        }
      ],
      "source": {
        "advisory": "GHSA-mrw7-hf4f-83pf",
        "discovery": "UNKNOWN"
      },
      "title": "VLLM deserialization vulnerability leading to DoS and potential RCE"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-62164",
    "datePublished": "2025-11-21T01:18:38.803Z",
    "dateReserved": "2025-10-07T16:12:03.425Z",
    "dateUpdated": "2025-11-24T18:12:44.195Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-59425 (GCVE-0-2025-59425)

Vulnerability from nvd – Published: 2025-10-07 14:06 – Updated: 2025-10-07 15:28
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM's built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue.
CWE
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: < 0.11.0rc2
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-59425",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-10-07T14:32:10.348830Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-10-07T15:28:10.303Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 0.11.0rc2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM\u0027s built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-385",
              "description": "CWE-385: Covert Timing Channel",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-07T14:06:49.042Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-wr9h-g72x-mwhm",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-wr9h-g72x-mwhm"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/ee10d7e6ff5875386c7f136ce8b5f525c8fcef48",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/ee10d7e6ff5875386c7f136ce8b5f525c8fcef48"
        },
        {
          "name": "https://github.com/vllm-project/vllm/blob/4b946d693e0af15740e9ca9c0e059d5f333b1083/vllm/entrypoints/openai/api_server.py#L1270-L1274",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/blob/4b946d693e0af15740e9ca9c0e059d5f333b1083/vllm/entrypoints/openai/api_server.py#L1270-L1274"
        },
        {
          "name": "https://github.com/vllm-project/vllm/releases/tag/v0.11.0",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/releases/tag/v0.11.0"
        }
      ],
      "source": {
        "advisory": "GHSA-wr9h-g72x-mwhm",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM vulnerable to timing attack at bearer auth"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-59425",
    "datePublished": "2025-10-07T14:06:49.042Z",
    "dateReserved": "2025-09-15T19:13:16.905Z",
    "dateUpdated": "2025-10-07T15:28:10.303Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48956 (GCVE-0-2025-48956)

Vulnerability from nvd – Published: 2025-08-21 14:41 – Updated: 2025-08-21 15:02
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). From 0.1.0 to before 0.10.1.1, a Denial of Service (DoS) vulnerability can be triggered by sending a single HTTP GET request with an extremely large header to an HTTP endpoint. This results in server memory exhaustion, potentially leading to a crash or unresponsiveness. The attack does not require authentication, making it exploitable by any remote user. This vulnerability is fixed in 0.10.1.1.
CWE
  • CWE-400 - Uncontrolled Resource Consumption
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.1.0, < 0.10.1.1
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48956",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-08-21T15:01:51.159829Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-08-21T15:02:09.023Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.1.0, \u003c 0.10.1.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). From 0.1.0 to before 0.10.1.1, a Denial of Service (DoS) vulnerability can be triggered by sending a single HTTP GET request with an extremely large header to an HTTP endpoint. This results in server memory exhaustion, potentially leading to a crash or unresponsiveness. The attack does not require authentication, making it exploitable by any remote user. This vulnerability is fixed in 0.10.1.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-400",
              "description": "CWE-400: Uncontrolled Resource Consumption",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-08-21T14:41:03.889Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-rxc4-3w6r-4v47",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-rxc4-3w6r-4v47"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/23267",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/23267"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/d8b736f913a59117803d6701521d2e4861701944",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/d8b736f913a59117803d6701521d2e4861701944"
        }
      ],
      "source": {
        "advisory": "GHSA-rxc4-3w6r-4v47",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM API endpoints vulnerable to Denial of Service Attacks"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48956",
    "datePublished": "2025-08-21T14:41:03.889Z",
    "dateReserved": "2025-05-28T18:49:07.585Z",
    "dateUpdated": "2025-08-21T15:02:09.023Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48944 (GCVE-0-2025-48944)

Vulnerability from nvd – Published: 2025-05-30 18:38 – Updated: 2025-05-30 18:56
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). In version 0.8.0 up to but excluding 0.9.0, the vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the "pattern" and "type" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted. Version 0.9.0 fixes the issue.
CWE
  • CWE-20 - Improper Input Validation
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.8.0, < 0.9.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48944",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-30T18:56:49.162584Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-30T18:56:56.406Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.8.0, \u003c 0.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). In version 0.8.0 up to but excluding 0.9.0, the vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the \"pattern\" and \"type\" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted. Version 0.9.0 fixes the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-30T18:38:45.505Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-vrq3-r879-7m65",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-vrq3-r879-7m65"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/17623",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/17623"
        }
      ],
      "source": {
        "advisory": "GHSA-vrq3-r879-7m65",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM Tool Schema allows DoS via Malformed pattern and type Fields"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48944",
    "datePublished": "2025-05-30T18:38:45.505Z",
    "dateReserved": "2025-05-28T18:49:07.582Z",
    "dateUpdated": "2025-05-30T18:56:56.406Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48943 (GCVE-0-2025-48943)

Vulnerability from nvd – Published: 2025-05-30 18:36 – Updated: 2025-05-30 18:56
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). Version 0.8.0 up to but excluding 0.9.0 have a Denial of Service (ReDoS) that causes the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg/CVE-2025-48942, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue.
CWE
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.8.0, < 0.9.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48943",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-30T18:54:23.948239Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-30T18:56:18.715Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.8.0, \u003c 0.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). Version 0.8.0 up to but excluding 0.9.0 have a Denial of Service (ReDoS) that causes the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg/CVE-2025-48942, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-248",
              "description": "CWE-248: Uncaught Exception",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-30T18:37:17.548Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-9hcf-v7m4-6m2j",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-9hcf-v7m4-6m2j"
        },
        {
          "name": "https://github.com/vllm-project/vllm/issues/17313",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/issues/17313"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/17623",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/17623"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff"
        }
      ],
      "source": {
        "advisory": "GHSA-9hcf-v7m4-6m2j",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM allows clients to crash the openai server with invalid regex"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48943",
    "datePublished": "2025-05-30T18:36:01.519Z",
    "dateReserved": "2025-05-28T18:49:07.582Z",
    "dateUpdated": "2025-05-30T18:56:18.715Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48942 (GCVE-0-2025-48942)

Vulnerability from nvd – Published: 2025-05-30 18:33 – Updated: 2025-05-30 20:37
VLAI?
Summary
vLLM is an inference and serving engine for large language models (LLMs). In versions 0.8.0 up to but excluding 0.9.0, hitting the /v1/completions API with a invalid json_schema as a Guided Param kills the vllm server. This vulnerability is similar GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue.
CWE
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.8.0, < 0.9.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48942",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-30T20:36:50.679547Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-30T20:37:06.015Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.8.0, \u003c 0.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM is an inference and serving engine for large language models (LLMs). In versions 0.8.0 up to but excluding 0.9.0, hitting the  /v1/completions API with a invalid json_schema as a Guided Param kills the vllm server. This vulnerability is similar GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-248",
              "description": "CWE-248: Uncaught Exception",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-30T18:37:10.641Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-6qc9-v4r8-22xg",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-6qc9-v4r8-22xg"
        },
        {
          "name": "https://github.com/vllm-project/vllm/issues/17248",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/issues/17248"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/17623",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/17623"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/08bf7840780980c7568c573c70a6a8db94fd45ff"
        }
      ],
      "source": {
        "advisory": "GHSA-6qc9-v4r8-22xg",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM DOS: Remotely kill vllm over http with invalid JSON schema"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48942",
    "datePublished": "2025-05-30T18:33:40.488Z",
    "dateReserved": "2025-05-28T18:49:07.581Z",
    "dateUpdated": "2025-05-30T20:37:06.015Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-48887 (GCVE-0-2025-48887)

Vulnerability from nvd – Published: 2025-05-30 17:36 – Updated: 2025-05-30 17:58
VLAI?
Summary
vLLM, an inference and serving engine for large language models (LLMs), has a Regular Expression Denial of Service (ReDoS) vulnerability in the file `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` of versions 0.6.4 up to but excluding 0.9.0. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable. The pattern contains multiple nested quantifiers, optional groups, and inner repetitions which make it vulnerable to catastrophic backtracking. Version 0.9.0 contains a patch for the issue.
CWE
  • CWE-1333 - Inefficient Regular Expression Complexity
Assigner
Impacted products
Vendor Product Version
vllm-project vllm Affected: >= 0.6.4, < 0.9.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-48887",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-30T17:58:00.784274Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-30T17:58:23.074Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "references": [
          {
            "tags": [
              "exploit"
            ],
            "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-w6q7-j642-7c25"
          }
        ],
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "vllm",
          "vendor": "vllm-project",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.6.4, \u003c 0.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "vLLM, an inference and serving engine for large language models (LLMs), has a Regular Expression Denial of Service (ReDoS) vulnerability in the file `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` of versions 0.6.4 up to but excluding 0.9.0. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable. The pattern contains multiple nested quantifiers, optional groups, and inner repetitions which make it vulnerable to catastrophic backtracking. Version 0.9.0 contains a patch for the issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-1333",
              "description": "CWE-1333: Inefficient Regular Expression Complexity",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-30T17:36:16.716Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/vllm-project/vllm/security/advisories/GHSA-w6q7-j642-7c25",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-w6q7-j642-7c25"
        },
        {
          "name": "https://github.com/vllm-project/vllm/pull/18454",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/pull/18454"
        },
        {
          "name": "https://github.com/vllm-project/vllm/commit/4fc1bf813ad80172c1db31264beaef7d93fe0601",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/vllm-project/vllm/commit/4fc1bf813ad80172c1db31264beaef7d93fe0601"
        }
      ],
      "source": {
        "advisory": "GHSA-w6q7-j642-7c25",
        "discovery": "UNKNOWN"
      },
      "title": "vLLM has a Regular Expression Denial of Service (ReDoS, Exponential Complexity) Vulnerability in `pythonic_tool_parser.py`"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2025-48887",
    "datePublished": "2025-05-30T17:36:16.716Z",
    "dateReserved": "2025-05-27T20:14:34.297Z",
    "dateUpdated": "2025-05-30T17:58:23.074Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}