CVE-2020-5215 (GCVE-0-2020-5215)

Vulnerability from cvelistv5 – Published: 2020-01-28 21:20 – Updated: 2024-08-04 08:22
VLAI?
Title
Segmentation faultin TensorFlow when converting a Python string to tf.float16
Summary
In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant("hello", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0.
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Assigner
Impacted products
Vendor Product Version
TensorFlow TensorFlow Affected: < 1.15.2
Affected: = 2.0.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T08:22:09.071Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "TensorFlow",
          "vendor": "TensorFlow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.2"
            },
            {
              "status": "affected",
              "version": "= 2.0.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant(\"hello\", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:C/C:L/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754 Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-01-28T21:20:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1"
        }
      ],
      "source": {
        "advisory": "GHSA-977j-xj7q-2jr9",
        "discovery": "UNKNOWN"
      },
      "title": "Segmentation faultin TensorFlow when converting a Python string to tf.float16",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-5215",
          "STATE": "PUBLIC",
          "TITLE": "Segmentation faultin TensorFlow when converting a Python string to tf.float16"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "TensorFlow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.2"
                          },
                          {
                            "version_value": "= 2.0.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "TensorFlow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant(\"hello\", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:C/C:L/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754 Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-977j-xj7q-2jr9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-5215",
    "datePublished": "2020-01-28T21:20:15",
    "dateReserved": "2020-01-02T00:00:00",
    "dateUpdated": "2024-08-04T08:22:09.071Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndExcluding\": \"1.15.2\", \"matchCriteriaId\": \"A06443A2-7C96-4B0D-A014-3CE4692A5818\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.0.0\", \"versionEndExcluding\": \"2.0.1\", \"matchCriteriaId\": \"0E24E496-9BD4-43D3-80F9-9619815BAD03\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant(\\\"hello\\\", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0.\"}, {\"lang\": \"es\", \"value\": \"En TensorFlow versiones anteriores a 1.15.2 y 2.0.1, la conversi\\u00f3n de una cadena (de Python) a un valor tf.float16 resulta en un fallo de segmentaci\\u00f3n en modo eager, ya que las comprobaciones de formato para este caso de uso solo est\\u00e1n en el modo graph. Este problema puede conllevar a una denegaci\\u00f3n de servicio en inference/training, donde un atacante malicioso puede enviar un punto de datos que contiene una cadena en lugar de un valor tf.float16. Efectos similares pueden ser obtenidos mediante la manipulaci\\u00f3n de modelos guardados y puntos de control por los cuales se reemplaza un valor escalar tf.float16 por una cadena escalar, este problema se desencadenar\\u00e1 debido a las conversiones autom\\u00e1ticas. Esto puede ser reproducido f\\u00e1cilmente mediante tf.constant(\\\"hello\\\", tf.float16), si una ejecuci\\u00f3n eager es habilitada. Este problema es parcheado en TensorFlow versiones 1.15.1 y 2.0.1 con esta vulnerabilidad parcheada. TensorFlow versi\\u00f3n 2.1.0 fue publicada despu\\u00e9s de que corregimos el problema, por lo que no est\\u00e1 afectado. Se incentiva a los usuarios a cambiar a TensorFlow versiones 1.15.1, 2.0.1 o 2.1.0.\"}]",
      "id": "CVE-2020-5215",
      "lastModified": "2024-11-21T05:33:41.743",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:C/C:L/I:L/A:L\", \"baseScore\": 5.0, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"REQUIRED\", \"scope\": \"CHANGED\", \"confidentialityImpact\": \"LOW\", \"integrityImpact\": \"LOW\", \"availabilityImpact\": \"LOW\"}, \"exploitabilityScore\": 0.8, \"impactScore\": 3.7}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 7.5, \"baseSeverity\": \"HIGH\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"NONE\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 3.9, \"impactScore\": 3.6}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:N/AC:M/Au:N/C:N/I:N/A:P\", \"baseScore\": 4.3, \"accessVector\": \"NETWORK\", \"accessComplexity\": \"MEDIUM\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"MEDIUM\", \"exploitabilityScore\": 8.6, \"impactScore\": 2.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2020-01-28T22:15:11.090",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Release Notes\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Release Notes\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Release Notes\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Release Notes\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-754\"}]}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-20\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2020-5215\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2020-01-28T22:15:11.090\",\"lastModified\":\"2024-11-21T05:33:41.743\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant(\\\"hello\\\", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0.\"},{\"lang\":\"es\",\"value\":\"En TensorFlow versiones anteriores a 1.15.2 y 2.0.1, la conversi\u00f3n de una cadena (de Python) a un valor tf.float16 resulta en un fallo de segmentaci\u00f3n en modo eager, ya que las comprobaciones de formato para este caso de uso solo est\u00e1n en el modo graph. Este problema puede conllevar a una denegaci\u00f3n de servicio en inference/training, donde un atacante malicioso puede enviar un punto de datos que contiene una cadena en lugar de un valor tf.float16. Efectos similares pueden ser obtenidos mediante la manipulaci\u00f3n de modelos guardados y puntos de control por los cuales se reemplaza un valor escalar tf.float16 por una cadena escalar, este problema se desencadenar\u00e1 debido a las conversiones autom\u00e1ticas. Esto puede ser reproducido f\u00e1cilmente mediante tf.constant(\\\"hello\\\", tf.float16), si una ejecuci\u00f3n eager es habilitada. Este problema es parcheado en TensorFlow versiones 1.15.1 y 2.0.1 con esta vulnerabilidad parcheada. TensorFlow versi\u00f3n 2.1.0 fue publicada despu\u00e9s de que corregimos el problema, por lo que no est\u00e1 afectado. Se incentiva a los usuarios a cambiar a TensorFlow versiones 1.15.1, 2.0.1 o 2.1.0.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:C/C:L/I:L/A:L\",\"baseScore\":5.0,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"REQUIRED\",\"scope\":\"CHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":0.8,\"impactScore\":3.7},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":7.5,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":3.9,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:N/AC:M/Au:N/C:N/I:N/A:P\",\"baseScore\":4.3,\"accessVector\":\"NETWORK\",\"accessComplexity\":\"MEDIUM\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":8.6,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-754\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-20\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"1.15.2\",\"matchCriteriaId\":\"A06443A2-7C96-4B0D-A014-3CE4692A5818\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.0.0\",\"versionEndExcluding\":\"2.0.1\",\"matchCriteriaId\":\"0E24E496-9BD4-43D3-80F9-9619815BAD03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Release Notes\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Release Notes\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Release Notes\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Release Notes\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…