GHSA-G7P5-5759-QV46
Vulnerability from github – Published: 2020-09-25 18:28 – Updated: 2024-10-30 21:11Impact
The data_splits argument of tf.raw_ops.StringNGrams lacks validation. This allows a user to pass values that can cause heap overflow errors and even leak contents of memory
>>> tf.raw_ops.StringNGrams(data=["aa", "bb", "cc", "dd", "ee", "ff"], data_splits=[0,8], separator=" ", ngram_widths=[3], left_pad="", right_pad="", pad_width=0, preserve_short_sequences=False)
StringNGrams(ngrams=<tf.Tensor: shape=(6,), dtype=string, numpy=
array([b'aa bb cc', b'bb cc dd', b'cc dd ee', b'dd ee ff',
b'ee ff \xf4j\xa7q\x7f\x00\x00q\x00\x00\x00\x00\x00\x00\x00\xd8\x9b~\xa8q\x7f\x00',
b'ff \xf4j\xa7q\x7f\x00\x00q\x00\x00\x00\x00\x00\x00\x00\xd8\x9b~\xa8q\x7f\x00 \x9b~\xa8q\x7f\x00\x00p\xf5j\xa7q\x7f\x00\x00H\xf8j\xa7q\x7f\x00\x00\xf0\xf3\xf7\x85q\x7f\x00\x00`}\xa6\x00\x00\x00\x00\x00`~\xa6\x00\x00\x00\x00\x00\xb0~\xeb\x9bq\x7f\x00'],...
All the binary strings after ee ff are contents from the memory stack. Since these can contain return addresses, this data leak can be used to defeat ASLR.
Patches
We have patched the issue in 0462de5b544ed4731aa2fb23946ac22c01856b80 and will release patch releases for all versions between 1.15 and 2.3.
We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "1.15.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.0.0"
},
{
"fixed": "2.0.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.1.0"
},
{
"fixed": "2.1.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.2.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.3.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "1.15.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.0.0"
},
{
"fixed": "2.0.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.1.0"
},
{
"fixed": "2.1.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.2.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.3.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "1.15.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.0.0"
},
{
"fixed": "2.0.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.1.0"
},
{
"fixed": "2.1.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.2.0"
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.1"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"2.3.0"
]
}
],
"aliases": [
"CVE-2020-15205"
],
"database_specific": {
"cwe_ids": [
"CWE-119",
"CWE-122",
"CWE-787"
],
"github_reviewed": true,
"github_reviewed_at": "2020-09-25T17:37:04Z",
"nvd_published_at": "2020-09-25T19:15:00Z",
"severity": "MODERATE"
},
"details": "### Impact\nThe `data_splits` argument of [`tf.raw_ops.StringNGrams`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/StringNGrams) lacks validation. This allows a user to pass values that can cause heap overflow errors and even leak contents of memory\n```python\n\u003e\u003e\u003e tf.raw_ops.StringNGrams(data=[\"aa\", \"bb\", \"cc\", \"dd\", \"ee\", \"ff\"], data_splits=[0,8], separator=\" \", ngram_widths=[3], left_pad=\"\", right_pad=\"\", pad_width=0, preserve_short_sequences=False)\nStringNGrams(ngrams=\u003ctf.Tensor: shape=(6,), dtype=string, numpy=\narray([b\u0027aa bb cc\u0027, b\u0027bb cc dd\u0027, b\u0027cc dd ee\u0027, b\u0027dd ee ff\u0027,\n b\u0027ee ff \\xf4j\\xa7q\\x7f\\x00\\x00q\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\xd8\\x9b~\\xa8q\\x7f\\x00\u0027,\n b\u0027ff \\xf4j\\xa7q\\x7f\\x00\\x00q\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\xd8\\x9b~\\xa8q\\x7f\\x00 \\x9b~\\xa8q\\x7f\\x00\\x00p\\xf5j\\xa7q\\x7f\\x00\\x00H\\xf8j\\xa7q\\x7f\\x00\\x00\\xf0\\xf3\\xf7\\x85q\\x7f\\x00\\x00`}\\xa6\\x00\\x00\\x00\\x00\\x00`~\\xa6\\x00\\x00\\x00\\x00\\x00\\xb0~\\xeb\\x9bq\\x7f\\x00\u0027],...\n```\n\nAll the binary strings after `ee ff` are contents from the memory stack. Since these can contain return addresses, this data leak can be used to defeat ASLR.\n\n### Patches\nWe have patched the issue in 0462de5b544ed4731aa2fb23946ac22c01856b80 and will release patch releases for all versions between 1.15 and 2.3.\n\nWe recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.",
"id": "GHSA-g7p5-5759-qv46",
"modified": "2024-10-30T21:11:46Z",
"published": "2020-09-25T18:28:38Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g7p5-5759-qv46"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2020-15205"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/0462de5b544ed4731aa2fb23946ac22c01856b80"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-285.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-320.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-128.yaml"
},
{
"type": "PACKAGE",
"url": "https://github.com/tensorflow/tensorflow"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
},
{
"type": "WEB",
"url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:P/VC:N/VI:N/VA:N/SC:H/SI:H/SA:H",
"type": "CVSS_V4"
}
],
"summary": "Data leak in Tensorflow"
}
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.