GHSA-M539-J985-HCR8
Vulnerability from github – Published: 2021-11-10 19:36 – Updated: 2024-11-13 21:46Impact
The Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative:
import tensorflow as tf
pool_size = [2, 2, 0]
layer = tf.keras.layers.MaxPooling3D(strides=1, pool_size=pool_size)
input_tensor = tf.random.uniform([3, 4, 10, 11, 12], dtype=tf.float32)
res = layer(input_tensor)
This is due to the TensorFlow's implementation of pooling operations where the values in the sliding window are not checked to be strictly positive.
Patches
We have patched the issue in GitHub commit 12b1ff82b3f26ff8de17e58703231d5a02ef1b8b (merging #51975).
The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported externally via a GitHub issue.
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.6.0"
},
{
"fixed": "2.6.1"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.5.0"
},
{
"fixed": "2.5.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.4.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.6.0"
},
{
"fixed": "2.6.1"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.5.0"
},
{
"fixed": "2.5.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.4.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.6.0"
},
{
"fixed": "2.6.1"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.5.0"
},
{
"fixed": "2.5.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.4.4"
}
],
"type": "ECOSYSTEM"
}
]
}
],
"aliases": [
"CVE-2021-41196"
],
"database_specific": {
"cwe_ids": [
"CWE-191"
],
"github_reviewed": true,
"github_reviewed_at": "2021-11-08T22:56:11Z",
"nvd_published_at": "2021-11-05T20:15:00Z",
"severity": "MODERATE"
},
"details": "### Impact\nThe Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative: \n\n```python\nimport tensorflow as tf\n\npool_size = [2, 2, 0]\nlayer = tf.keras.layers.MaxPooling3D(strides=1, pool_size=pool_size)\ninput_tensor = tf.random.uniform([3, 4, 10, 11, 12], dtype=tf.float32)\nres = layer(input_tensor)\n```\n\nThis is due to the TensorFlow\u0027s implementation of pooling operations where the values in the sliding window are not checked to be strictly positive.\n\n### Patches\nWe have patched the issue in GitHub commit [12b1ff82b3f26ff8de17e58703231d5a02ef1b8b](https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b) (merging [#51975](https://github.com/tensorflow/tensorflow/pull/51975)).\n\nThe fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution \nThis vulnerability has been reported externally via a [GitHub issue](https://github.com/tensorflow/tensorflow/issues/51936).\n",
"id": "GHSA-m539-j985-hcr8",
"modified": "2024-11-13T21:46:28Z",
"published": "2021-11-10T19:36:21Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2021-41196"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/issues/51936"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-606.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-804.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-389.yaml"
},
{
"type": "PACKAGE",
"url": "https://github.com/tensorflow/tensorflow"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N",
"type": "CVSS_V4"
}
],
"summary": "Crash in `max_pool3d` when size argument is 0 or negative"
}
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.