CVE-2021-41196 (GCVE-0-2021-41196)

Vulnerability from cvelistv5 – Published: 2021-11-05 19:55 – Updated: 2024-08-04 03:08
VLAI?
Summary
TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow's implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
CWE
  • CWE-191 - Integer Underflow (Wrap or Wraparound)
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: >= 2.6.0, < 2.6.1
Affected: >= 2.5.0, < 2.5.2
Affected: < 2.4.4
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.485Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/51936"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow\u0027s implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-191",
              "description": "CWE-191: Integer Underflow (Wrap or Wraparound)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T19:55:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/51936"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
        }
      ],
      "source": {
        "advisory": "GHSA-m539-j985-hcr8",
        "discovery": "UNKNOWN"
      },
      "title": "Crash in `max_pool3d` when size argument is 0 or negative",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41196",
          "STATE": "PUBLIC",
          "TITLE": "Crash in `max_pool3d` when size argument is 0 or negative"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow\u0027s implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-191: Integer Underflow (Wrap or Wraparound)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/51936",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/51936"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m539-j985-hcr8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41196",
    "datePublished": "2021-11-05T19:55:13",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.485Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndExcluding\": \"2.4.4\", \"matchCriteriaId\": \"455FB550-4C9C-4BD6-9F76-A627B62AB332\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.5.0\", \"versionEndExcluding\": \"2.5.2\", \"matchCriteriaId\": \"035CDF63-1548-4FB4-B8A9-B8D328FAF910\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.6.0\", \"versionEndExcluding\": \"2.6.1\", \"matchCriteriaId\": \"5D68D8D1-DB27-4395-9D3D-2BED901B852C\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow\u0027s implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.\"}, {\"lang\": \"es\", \"value\": \"TensorFlow es una plataforma de c\\u00f3digo abierto para el aprendizaje autom\\u00e1tico. En las versiones afectadas, las capas de pooling de Keras pueden provocar un segfault si el tama\\u00f1o del pool es 0 o si una dimensi\\u00f3n es negativa. Esto es debido a la implementaci\\u00f3n de TensorFlow de las operaciones de pooling donde no es comprobado que los valores de la ventana deslizante sean estrictamente positivos. La correcci\\u00f3n ser\\u00e1 incluida en TensorFlow versi\\u00f3n 2.7.0. Tambi\\u00e9n ser\\u00e1 incluida este commit en TensorFlow versi\\u00f3n 2.6.1, TensorFlow versi\\u00f3n 2.5.2, y TensorFlow versi\\u00f3n 2.4.4, ya que estos tambi\\u00e9n est\\u00e1n afectados y todav\\u00eda est\\u00e1n en el rango admitido\"}]",
      "id": "CVE-2021-41196",
      "lastModified": "2024-11-21T06:25:44.687",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 5.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.6}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 5.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.6}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:L/AC:L/Au:N/C:N/I:N/A:P\", \"baseScore\": 2.1, \"accessVector\": \"LOCAL\", \"accessComplexity\": \"LOW\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"LOW\", \"exploitabilityScore\": 3.9, \"impactScore\": 2.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2021-11-05T20:15:07.780",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/issues/51936\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/issues/51936\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-191\"}]}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-191\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2021-41196\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-11-05T20:15:07.780\",\"lastModified\":\"2024-11-21T06:25:44.687\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow\u0027s implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, las capas de pooling de Keras pueden provocar un segfault si el tama\u00f1o del pool es 0 o si una dimensi\u00f3n es negativa. Esto es debido a la implementaci\u00f3n de TensorFlow de las operaciones de pooling donde no es comprobado que los valores de la ventana deslizante sean estrictamente positivos. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-191\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-191\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.4.4\",\"matchCriteriaId\":\"455FB550-4C9C-4BD6-9F76-A627B62AB332\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.5.0\",\"versionEndExcluding\":\"2.5.2\",\"matchCriteriaId\":\"035CDF63-1548-4FB4-B8A9-B8D328FAF910\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.6.0\",\"versionEndExcluding\":\"2.6.1\",\"matchCriteriaId\":\"5D68D8D1-DB27-4395-9D3D-2BED901B852C\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/issues/51936\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/issues/51936\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…