CVE-2022-23594 (GCVE-0-2022-23594)

Vulnerability from cvelistv5 – Published: 2022-02-04 22:32 – Updated: 2025-04-23 19:08
VLAI?
Title
Out of bounds read in Tensorflow
Summary
Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.
CWE
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: >= 2.7.0, < 2.8.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.930Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23594",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T15:56:39.810788Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:08:04.448Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.8.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:11.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport"
        }
      ],
      "source": {
        "advisory": "GHSA-9x52-887g-fhc2",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds read in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23594",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds read in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.8.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9x52-887g-fhc2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23594",
    "datePublished": "2022-02-04T22:32:11.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:08:04.448Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*\", \"matchCriteriaId\": \"2EDFAAB8-799C-4259-9102-944D4760DA2C\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.\"}, {\"lang\": \"es\", \"value\": \"Tensorflow es un Marco de Aprendizaje Autom\\u00e1tico de C\\u00f3digo Abierto. El dialecto TFG de TensorFlow (MLIR) hace varias suposiciones sobre el \\\"GraphDef\\\" entrante antes de convertirlo al dialecto basado en MLIR. Si un atacante cambia el formato del \\\"SavedModel\\\" en el disco para invalidar estas suposiciones y el \\\"GraphDef\\\" es entonces convertido al IR basado en MLIR, entonces pueden causar un bloqueo en el int\\u00e9rprete de Python. Bajo determinados escenarios, es posible la lectura/escritura de OOB en la pila. Estos problemas han sido detectados por medio de fuzzing y es posible que se presenten m\\u00e1s debilidades. Los parchearemos a medida que son detectadas\"}]",
      "id": "CVE-2022-23594",
      "lastModified": "2024-11-21T06:48:53.407",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H\", \"baseScore\": 8.8, \"baseSeverity\": \"HIGH\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"CHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 2.0, \"impactScore\": 6.0}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 5.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.6}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:L/AC:L/Au:N/C:N/I:N/A:P\", \"baseScore\": 2.1, \"accessVector\": \"LOCAL\", \"accessComplexity\": \"LOW\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"LOW\", \"exploitabilityScore\": 3.9, \"impactScore\": 2.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2022-02-04T23:15:15.410",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-125\"}]}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-125\"}, {\"lang\": \"en\", \"value\": \"CWE-787\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2022-23594\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2022-02-04T23:15:15.410\",\"lastModified\":\"2024-11-21T06:48:53.407\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.\"},{\"lang\":\"es\",\"value\":\"Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. El dialecto TFG de TensorFlow (MLIR) hace varias suposiciones sobre el \\\"GraphDef\\\" entrante antes de convertirlo al dialecto basado en MLIR. Si un atacante cambia el formato del \\\"SavedModel\\\" en el disco para invalidar estas suposiciones y el \\\"GraphDef\\\" es entonces convertido al IR basado en MLIR, entonces pueden causar un bloqueo en el int\u00e9rprete de Python. Bajo determinados escenarios, es posible la lectura/escritura de OOB en la pila. Estos problemas han sido detectados por medio de fuzzing y es posible que se presenten m\u00e1s debilidades. Los parchearemos a medida que son detectadas\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H\",\"baseScore\":8.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"CHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.0,\"impactScore\":6.0},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-125\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-125\"},{\"lang\":\"en\",\"value\":\"CWE-787\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"2EDFAAB8-799C-4259-9102-944D4760DA2C\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]}]}}",
    "vulnrichment": {
      "containers": "{\"cna\": {\"affected\": [{\"product\": \"tensorflow\", \"vendor\": \"tensorflow\", \"versions\": [{\"status\": \"affected\", \"version\": \"\u003e= 2.7.0, \u003c 2.8.0\"}]}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.\"}], \"metrics\": [{\"cvssV3_1\": {\"attackComplexity\": \"LOW\", \"attackVector\": \"LOCAL\", \"availabilityImpact\": \"HIGH\", \"baseScore\": 8.8, \"baseSeverity\": \"HIGH\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"scope\": \"CHANGED\", \"userInteraction\": \"NONE\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H\", \"version\": \"3.1\"}}], \"problemTypes\": [{\"descriptions\": [{\"cweId\": \"CWE-125\", \"description\": \"CWE-125: Out-of-bounds Read\", \"lang\": \"en\", \"type\": \"CWE\"}]}], \"providerMetadata\": {\"dateUpdated\": \"2022-02-04T22:32:11.000Z\", \"orgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"shortName\": \"GitHub_M\"}, \"references\": [{\"tags\": [\"x_refsource_CONFIRM\"], \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2\"}, {\"tags\": [\"x_refsource_MISC\"], \"url\": \"https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport\"}], \"source\": {\"advisory\": \"GHSA-9x52-887g-fhc2\", \"discovery\": \"UNKNOWN\"}, \"title\": \"Out of bounds read in Tensorflow\", \"x_legacyV4Record\": {\"CVE_data_meta\": {\"ASSIGNER\": \"security-advisories@github.com\", \"ID\": \"CVE-2022-23594\", \"STATE\": \"PUBLIC\", \"TITLE\": \"Out of bounds read in Tensorflow\"}, \"affects\": {\"vendor\": {\"vendor_data\": [{\"product\": {\"product_data\": [{\"product_name\": \"tensorflow\", \"version\": {\"version_data\": [{\"version_value\": \"\u003e= 2.7.0, \u003c 2.8.0\"}]}}]}, \"vendor_name\": \"tensorflow\"}]}}, \"data_format\": \"MITRE\", \"data_type\": \"CVE\", \"data_version\": \"4.0\", \"description\": {\"description_data\": [{\"lang\": \"eng\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.\"}]}, \"impact\": {\"cvss\": {\"attackComplexity\": \"LOW\", \"attackVector\": \"LOCAL\", \"availabilityImpact\": \"HIGH\", \"baseScore\": 8.8, \"baseSeverity\": \"HIGH\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"scope\": \"CHANGED\", \"userInteraction\": \"NONE\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H\", \"version\": \"3.1\"}}, \"problemtype\": {\"problemtype_data\": [{\"description\": [{\"lang\": \"eng\", \"value\": \"CWE-125: Out-of-bounds Read\"}]}]}, \"references\": {\"reference_data\": [{\"name\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2\", \"refsource\": \"CONFIRM\", \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2\"}, {\"name\": \"https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport\", \"refsource\": \"MISC\", \"url\": \"https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport\"}]}, \"source\": {\"advisory\": \"GHSA-9x52-887g-fhc2\", \"discovery\": \"UNKNOWN\"}}}, \"adp\": [{\"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-03T03:43:46.930Z\"}, \"title\": \"CVE Program Container\", \"references\": [{\"tags\": [\"x_refsource_CONFIRM\", \"x_transferred\"], \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2\"}, {\"tags\": [\"x_refsource_MISC\", \"x_transferred\"], \"url\": \"https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport\"}]}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2022-23594\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"none\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"total\"}], \"version\": \"2.0.3\", \"timestamp\": \"2025-04-23T15:56:39.810788Z\"}}}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2025-04-23T15:56:41.353Z\"}}]}",
      "cveMetadata": "{\"assignerOrgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"assignerShortName\": \"GitHub_M\", \"cveId\": \"CVE-2022-23594\", \"datePublished\": \"2022-02-04T22:32:11.000Z\", \"dateReserved\": \"2022-01-19T00:00:00.000Z\", \"dateUpdated\": \"2025-04-23T19:08:04.448Z\", \"state\": \"PUBLISHED\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…