CVE-2024-35198 (GCVE-0-2024-35198)

Vulnerability from cvelistv5 – Published: 2024-07-18 22:40 – Updated: 2024-08-07 16:00
VLAI?
Summary
TorchServe is a flexible and easy-to-use tool for serving and scaling PyTorch models in production. TorchServe 's check on allowed_urls configuration can be by-passed if the URL contains characters such as ".." but it does not prevent the model from being downloaded into the model store. Once a file is downloaded, it can be referenced without providing a URL the second time, which effectively bypasses the allowed_urls security check. Customers using PyTorch inference Deep Learning Containers (DLC) through Amazon SageMaker and EKS are not affected. This issue in TorchServe has been fixed by validating the URL without characters such as ".." before downloading see PR #3082. TorchServe release 0.11.0 includes the fix to address this vulnerability. Users are advised to upgrade. There are no known workarounds for this vulnerability.
CWE
  • CWE-706 - Use of Incorrectly-Resolved Name or Reference
Assigner
Impacted products
Vendor Product Version
pytorch serve Affected: >= 0.4.2, < 0.11.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-35198",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-07-19T16:58:05.654373Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-19T16:58:12.450Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T03:07:46.750Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2"
          },
          {
            "name": "https://github.com/pytorch/serve/pull/3082",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/pytorch/serve/pull/3082"
          },
          {
            "name": "https://github.com/pytorch/serve/releases/tag/v0.11.0",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/pytorch/serve/releases/tag/v0.11.0"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "serve",
          "vendor": "pytorch",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 0.4.2, \u003c 0.11.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TorchServe is a flexible and easy-to-use tool for serving and scaling PyTorch models in production. TorchServe \u0027s check on allowed_urls configuration can be by-passed if the URL contains characters such as \"..\" but it does not prevent the model from being downloaded into the model store. Once a file is downloaded, it can be referenced without providing a URL the second time, which effectively bypasses the allowed_urls security check. Customers using PyTorch inference Deep Learning Containers (DLC) through Amazon SageMaker and EKS are not affected. This issue in TorchServe has been fixed by validating the URL without characters such as \"..\" before downloading see PR #3082. TorchServe release 0.11.0 includes the fix to address this vulnerability. Users are advised to upgrade. There are no known workarounds for this vulnerability."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 9.8,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-706",
              "description": "CWE-706: Use of Incorrectly-Resolved Name or Reference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-08-07T16:00:46.093Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2"
        },
        {
          "name": "https://github.com/pytorch/serve/pull/3082",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/pytorch/serve/pull/3082"
        },
        {
          "name": "https://github.com/pytorch/serve/releases/tag/v0.11.0",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/pytorch/serve/releases/tag/v0.11.0"
        }
      ],
      "source": {
        "advisory": "GHSA-wxcx-gg9c-fwp2",
        "discovery": "UNKNOWN"
      },
      "title": "TorchServe bypass allowed_urls configuration"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2024-35198",
    "datePublished": "2024-07-18T22:40:08.176Z",
    "dateReserved": "2024-05-10T14:24:24.343Z",
    "dateUpdated": "2024-08-07T16:00:46.093Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "descriptions": "[{\"lang\": \"en\", \"value\": \"TorchServe is a flexible and easy-to-use tool for serving and scaling PyTorch models in production. TorchServe \u0027s check on allowed_urls configuration can be by-passed if the URL contains characters such as \\\"..\\\" but it does not prevent the model from being downloaded into the model store. Once a file is downloaded, it can be referenced without providing a URL the second time, which effectively bypasses the allowed_urls security check. Customers using PyTorch inference Deep Learning Containers (DLC) through Amazon SageMaker and EKS are not affected. This issue in TorchServe has been fixed by validating the URL without characters such as \\\"..\\\" before downloading see PR #3082. TorchServe release 0.11.0 includes the fix to address this vulnerability. Users are advised to upgrade. There are no known workarounds for this vulnerability.\"}, {\"lang\": \"es\", \"value\": \"TorchServe es una herramienta flexible y f\\u00e1cil de usar para servir y escalar modelos PyTorch en producci\\u00f3n. La verificaci\\u00f3n de TorchServe en la configuraci\\u00f3n de Allow_urls se puede omitir si la URL contiene caracteres como \\\"..\\\" pero no impide que el modelo se descargue en la tienda de modelos. Una vez que se descarga un archivo, se puede hacer referencia a \\u00e9l sin proporcionar una URL la segunda vez, lo que efectivamente evita la verificaci\\u00f3n de seguridad de Allow_urls. Los clientes que utilizan contenedores de aprendizaje profundo (DLC) de inferencia de PyTorch a trav\\u00e9s de Amazon SageMaker y EKS no se ven afectados. Este problema en TorchServe se solucion\\u00f3 validando la URL sin caracteres como \\\"..\\\" antes de descargar, consulte PR #3082. La versi\\u00f3n 0.11.0 de TorchServe incluye la soluci\\u00f3n para solucionar esta vulnerabilidad. Se recomienda a los usuarios que actualicen. No se conocen workarounds para esta vulnerabilidad.\"}]",
      "id": "CVE-2024-35198",
      "lastModified": "2024-11-21T09:19:54.920",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H\", \"baseScore\": 9.8, \"baseSeverity\": \"CRITICAL\", \"attackVector\": \"NETWORK\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"NONE\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"HIGH\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 3.9, \"impactScore\": 5.9}]}",
      "published": "2024-07-19T02:15:14.150",
      "references": "[{\"url\": \"https://github.com/pytorch/serve/pull/3082\", \"source\": \"security-advisories@github.com\"}, {\"url\": \"https://github.com/pytorch/serve/releases/tag/v0.11.0\", \"source\": \"security-advisories@github.com\"}, {\"url\": \"https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2\", \"source\": \"security-advisories@github.com\"}, {\"url\": \"https://github.com/pytorch/serve/pull/3082\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\"}, {\"url\": \"https://github.com/pytorch/serve/releases/tag/v0.11.0\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\"}, {\"url\": \"https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\"}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Awaiting Analysis",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-706\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2024-35198\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2024-07-19T02:15:14.150\",\"lastModified\":\"2025-09-04T15:43:52.833\",\"vulnStatus\":\"Analyzed\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TorchServe is a flexible and easy-to-use tool for serving and scaling PyTorch models in production. TorchServe \u0027s check on allowed_urls configuration can be by-passed if the URL contains characters such as \\\"..\\\" but it does not prevent the model from being downloaded into the model store. Once a file is downloaded, it can be referenced without providing a URL the second time, which effectively bypasses the allowed_urls security check. Customers using PyTorch inference Deep Learning Containers (DLC) through Amazon SageMaker and EKS are not affected. This issue in TorchServe has been fixed by validating the URL without characters such as \\\"..\\\" before downloading see PR #3082. TorchServe release 0.11.0 includes the fix to address this vulnerability. Users are advised to upgrade. There are no known workarounds for this vulnerability.\"},{\"lang\":\"es\",\"value\":\"TorchServe es una herramienta flexible y f\u00e1cil de usar para servir y escalar modelos PyTorch en producci\u00f3n. La verificaci\u00f3n de TorchServe en la configuraci\u00f3n de Allow_urls se puede omitir si la URL contiene caracteres como \\\"..\\\" pero no impide que el modelo se descargue en la tienda de modelos. Una vez que se descarga un archivo, se puede hacer referencia a \u00e9l sin proporcionar una URL la segunda vez, lo que efectivamente evita la verificaci\u00f3n de seguridad de Allow_urls. Los clientes que utilizan contenedores de aprendizaje profundo (DLC) de inferencia de PyTorch a trav\u00e9s de Amazon SageMaker y EKS no se ven afectados. Este problema en TorchServe se solucion\u00f3 validando la URL sin caracteres como \\\"..\\\" antes de descargar, consulte PR #3082. La versi\u00f3n 0.11.0 de TorchServe incluye la soluci\u00f3n para solucionar esta vulnerabilidad. Se recomienda a los usuarios que actualicen. No se conocen workarounds para esta vulnerabilidad.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H\",\"baseScore\":9.8,\"baseSeverity\":\"CRITICAL\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":3.9,\"impactScore\":5.9}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-706\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:pytorch:torchserve:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"0.4.2\",\"versionEndExcluding\":\"0.11.0\",\"matchCriteriaId\":\"44161383-FECC-4722-B2F1-D1162C00B26F\"}]}]}],\"references\":[{\"url\":\"https://github.com/pytorch/serve/pull/3082\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\"]},{\"url\":\"https://github.com/pytorch/serve/releases/tag/v0.11.0\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Release Notes\"]},{\"url\":\"https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/pytorch/serve/pull/3082\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\"]},{\"url\":\"https://github.com/pytorch/serve/releases/tag/v0.11.0\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Release Notes\"]},{\"url\":\"https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]}]}}",
    "vulnrichment": {
      "containers": "{\"adp\": [{\"title\": \"CVE Program Container\", \"references\": [{\"url\": \"https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2\", \"name\": \"https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2\", \"tags\": [\"x_refsource_CONFIRM\", \"x_transferred\"]}, {\"url\": \"https://github.com/pytorch/serve/pull/3082\", \"name\": \"https://github.com/pytorch/serve/pull/3082\", \"tags\": [\"x_refsource_MISC\", \"x_transferred\"]}, {\"url\": \"https://github.com/pytorch/serve/releases/tag/v0.11.0\", \"name\": \"https://github.com/pytorch/serve/releases/tag/v0.11.0\", \"tags\": [\"x_refsource_MISC\", \"x_transferred\"]}], \"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-02T03:07:46.750Z\"}}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2024-35198\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"none\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"partial\"}], \"version\": \"2.0.3\", \"timestamp\": \"2024-07-19T16:58:05.654373Z\"}}}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2024-07-19T16:58:09.737Z\"}}], \"cna\": {\"title\": \"TorchServe bypass allowed_urls configuration\", \"source\": {\"advisory\": \"GHSA-wxcx-gg9c-fwp2\", \"discovery\": \"UNKNOWN\"}, \"metrics\": [{\"cvssV3_1\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 9.8, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"CRITICAL\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H\", \"integrityImpact\": \"HIGH\", \"userInteraction\": \"NONE\", \"attackComplexity\": \"LOW\", \"availabilityImpact\": \"HIGH\", \"privilegesRequired\": \"NONE\", \"confidentialityImpact\": \"HIGH\"}}], \"affected\": [{\"vendor\": \"pytorch\", \"product\": \"serve\", \"versions\": [{\"status\": \"affected\", \"version\": \"\u003e= 0.4.2, \u003c 0.11.0\"}]}], \"references\": [{\"url\": \"https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2\", \"name\": \"https://github.com/pytorch/serve/security/advisories/GHSA-wxcx-gg9c-fwp2\", \"tags\": [\"x_refsource_CONFIRM\"]}, {\"url\": \"https://github.com/pytorch/serve/pull/3082\", \"name\": \"https://github.com/pytorch/serve/pull/3082\", \"tags\": [\"x_refsource_MISC\"]}, {\"url\": \"https://github.com/pytorch/serve/releases/tag/v0.11.0\", \"name\": \"https://github.com/pytorch/serve/releases/tag/v0.11.0\", \"tags\": [\"x_refsource_MISC\"]}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"TorchServe is a flexible and easy-to-use tool for serving and scaling PyTorch models in production. TorchServe \u0027s check on allowed_urls configuration can be by-passed if the URL contains characters such as \\\"..\\\" but it does not prevent the model from being downloaded into the model store. Once a file is downloaded, it can be referenced without providing a URL the second time, which effectively bypasses the allowed_urls security check. Customers using PyTorch inference Deep Learning Containers (DLC) through Amazon SageMaker and EKS are not affected. This issue in TorchServe has been fixed by validating the URL without characters such as \\\"..\\\" before downloading see PR #3082. TorchServe release 0.11.0 includes the fix to address this vulnerability. Users are advised to upgrade. There are no known workarounds for this vulnerability.\"}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"CWE\", \"cweId\": \"CWE-706\", \"description\": \"CWE-706: Use of Incorrectly-Resolved Name or Reference\"}]}], \"providerMetadata\": {\"orgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"shortName\": \"GitHub_M\", \"dateUpdated\": \"2024-08-07T16:00:46.093Z\"}}}",
      "cveMetadata": "{\"cveId\": \"CVE-2024-35198\", \"state\": \"PUBLISHED\", \"dateUpdated\": \"2024-08-07T16:00:46.093Z\", \"dateReserved\": \"2024-05-10T14:24:24.343Z\", \"assignerOrgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"datePublished\": \"2024-07-18T22:40:08.176Z\", \"assignerShortName\": \"GitHub_M\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…