CVE-2025-8713 (GCVE-0-2025-8713)

Vulnerability from cvelistv5 – Published: 2025-08-14 13:00 – Updated: 2025-08-14 19:51
VLAI?
Summary
PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access. Separately, statistics allow a user to read sampled data that a row security policy intended to hide. PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process. Prior to this release, a user could craft a leaky operator that bypassed view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies. Reachable statistics data notably included histograms and most-common-values lists. CVE-2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.
CWE
  • CWE-1230 - Exposure of Sensitive Information Through Metadata
Assigner
Impacted products
Vendor Product Version
n/a PostgreSQL Affected: 17 , < 17.6 (rpm)
Affected: 16 , < 16.10 (rpm)
Affected: 15 , < 15.14 (rpm)
Affected: 14 , < 14.19 (rpm)
Affected: 0 , < 13.22 (rpm)
Credits
The PostgreSQL project thanks Dean Rasheed for reporting this problem.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-8713",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-08-14T19:50:52.127054Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-08-14T19:51:04.708Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "product": "PostgreSQL",
          "vendor": "n/a",
          "versions": [
            {
              "lessThan": "17.6",
              "status": "affected",
              "version": "17",
              "versionType": "rpm"
            },
            {
              "lessThan": "16.10",
              "status": "affected",
              "version": "16",
              "versionType": "rpm"
            },
            {
              "lessThan": "15.14",
              "status": "affected",
              "version": "15",
              "versionType": "rpm"
            },
            {
              "lessThan": "14.19",
              "status": "affected",
              "version": "14",
              "versionType": "rpm"
            },
            {
              "lessThan": "13.22",
              "status": "affected",
              "version": "0",
              "versionType": "rpm"
            }
          ]
        }
      ],
      "credits": [
        {
          "lang": "en",
          "value": "The PostgreSQL project thanks Dean Rasheed for reporting this problem."
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access.  Separately, statistics allow a user to read sampled data that a row security policy intended to hide.  PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process.  Prior to this release, a user could craft a leaky operator that bypassed view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies.  Reachable statistics data notably included histograms and most-common-values lists.  CVE-2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained.  Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "baseScore": 3.1,
            "baseSeverity": "LOW",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:N/A:N",
            "version": "3.1"
          },
          "format": "CVSS"
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-1230",
              "description": "Exposure of Sensitive Information Through Metadata",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-08-14T13:00:05.807Z",
        "orgId": "f86ef6dc-4d3a-42ad-8f28-e6d5547a5007",
        "shortName": "PostgreSQL"
      },
      "references": [
        {
          "url": "https://www.postgresql.org/support/security/CVE-2025-8713/"
        }
      ],
      "title": "PostgreSQL optimizer statistics can expose sampled data within a view, partition, or child table"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "f86ef6dc-4d3a-42ad-8f28-e6d5547a5007",
    "assignerShortName": "PostgreSQL",
    "cveId": "CVE-2025-8713",
    "datePublished": "2025-08-14T13:00:05.807Z",
    "dateReserved": "2025-08-07T16:39:46.270Z",
    "dateUpdated": "2025-08-14T19:51:04.708Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2025-8713\",\"sourceIdentifier\":\"f86ef6dc-4d3a-42ad-8f28-e6d5547a5007\",\"published\":\"2025-08-14T13:15:37.543\",\"lastModified\":\"2025-08-15T13:13:07.817\",\"vulnStatus\":\"Awaiting Analysis\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access.  Separately, statistics allow a user to read sampled data that a row security policy intended to hide.  PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process.  Prior to this release, a user could craft a leaky operator that bypassed view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies.  Reachable statistics data notably included histograms and most-common-values lists.  CVE-2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained.  Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.\"},{\"lang\":\"es\",\"value\":\"Las estad\u00edsticas del optimizador de PostgreSQL permiten al usuario leer datos muestreados dentro de una vista a la que no puede acceder. Por otro lado, las estad\u00edsticas permiten al usuario leer datos muestreados que una pol\u00edtica de seguridad de filas pretend\u00eda ocultar. PostgreSQL mantiene las estad\u00edsticas de las tablas mediante el muestreo de los datos disponibles en las columnas; estos datos se consultan durante el proceso de planificaci\u00f3n de consultas. Antes de esta versi\u00f3n, un usuario pod\u00eda manipular un operador con fugas que omit\u00eda las listas de control de acceso (ACL) de las vistas y las pol\u00edticas de seguridad de filas en las jerarqu\u00edas de particionamiento o herencia de tablas. Los datos estad\u00edsticos accesibles inclu\u00edan, en particular, histogramas y listas de valores m\u00e1s comunes. Las vulnerabilidades CVE-2017-7484 y CVE-2019-10130 pretend\u00edan subsanar esta clase de vulnerabilidad, pero esta brecha persist\u00eda. Las versiones anteriores a PostgreSQL 17.6, 16.10, 15.14, 14.19 y 13.22 est\u00e1n afectadas.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"f86ef6dc-4d3a-42ad-8f28-e6d5547a5007\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:N/A:N\",\"baseScore\":3.1,\"baseSeverity\":\"LOW\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"NONE\"},\"exploitabilityScore\":1.6,\"impactScore\":1.4}]},\"weaknesses\":[{\"source\":\"f86ef6dc-4d3a-42ad-8f28-e6d5547a5007\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-1230\"}]}],\"references\":[{\"url\":\"https://www.postgresql.org/support/security/CVE-2025-8713/\",\"source\":\"f86ef6dc-4d3a-42ad-8f28-e6d5547a5007\"}]}}",
    "vulnrichment": {
      "containers": "{\"adp\": [{\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2025-8713\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"none\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"partial\"}], \"version\": \"2.0.3\", \"timestamp\": \"2025-08-14T19:50:52.127054Z\"}}}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2025-08-14T19:51:00.684Z\"}}], \"cna\": {\"title\": \"PostgreSQL optimizer statistics can expose sampled data within a view, partition, or child table\", \"credits\": [{\"lang\": \"en\", \"value\": \"The PostgreSQL project thanks Dean Rasheed for reporting this problem.\"}], \"metrics\": [{\"format\": \"CVSS\", \"cvssV3_1\": {\"version\": \"3.1\", \"baseScore\": 3.1, \"baseSeverity\": \"LOW\", \"vectorString\": \"CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:N/A:N\"}}], \"affected\": [{\"vendor\": \"n/a\", \"product\": \"PostgreSQL\", \"versions\": [{\"status\": \"affected\", \"version\": \"17\", \"lessThan\": \"17.6\", \"versionType\": \"rpm\"}, {\"status\": \"affected\", \"version\": \"16\", \"lessThan\": \"16.10\", \"versionType\": \"rpm\"}, {\"status\": \"affected\", \"version\": \"15\", \"lessThan\": \"15.14\", \"versionType\": \"rpm\"}, {\"status\": \"affected\", \"version\": \"14\", \"lessThan\": \"14.19\", \"versionType\": \"rpm\"}, {\"status\": \"affected\", \"version\": \"0\", \"lessThan\": \"13.22\", \"versionType\": \"rpm\"}], \"defaultStatus\": \"unaffected\"}], \"references\": [{\"url\": \"https://www.postgresql.org/support/security/CVE-2025-8713/\"}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access.  Separately, statistics allow a user to read sampled data that a row security policy intended to hide.  PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process.  Prior to this release, a user could craft a leaky operator that bypassed view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies.  Reachable statistics data notably included histograms and most-common-values lists.  CVE-2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained.  Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.\"}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"CWE\", \"cweId\": \"CWE-1230\", \"description\": \"Exposure of Sensitive Information Through Metadata\"}]}], \"providerMetadata\": {\"orgId\": \"f86ef6dc-4d3a-42ad-8f28-e6d5547a5007\", \"shortName\": \"PostgreSQL\", \"dateUpdated\": \"2025-08-14T13:00:05.807Z\"}}}",
      "cveMetadata": "{\"cveId\": \"CVE-2025-8713\", \"state\": \"PUBLISHED\", \"dateUpdated\": \"2025-08-14T19:51:04.708Z\", \"dateReserved\": \"2025-08-07T16:39:46.270Z\", \"assignerOrgId\": \"f86ef6dc-4d3a-42ad-8f28-e6d5547a5007\", \"datePublished\": \"2025-08-14T13:00:05.807Z\", \"assignerShortName\": \"PostgreSQL\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…