GHSA-C545-C4F9-RF6V

Vulnerability from github – Published: 2021-08-25 14:40 – Updated: 2024-11-13 21:18
VLAI?
Summary
Heap OOB in TFLite
Details

Impact

TFLite's expand_dims.cc contains a vulnerability which allows reading one element outside of bounds of heap allocated data:

  if (axis < 0) { 
    axis = input_dims.size + 1 + axis;
  }   
  TF_LITE_ENSURE(context, axis <= input_dims.size);

  TfLiteIntArray* output_dims = TfLiteIntArrayCreate(input_dims.size + 1);
  for (int i = 0; i < output_dims->size; ++i) {
    if (i < axis) {
      output_dims->data[i] = input_dims.data[i];
    } else if (i == axis) {
      output_dims->data[i] = 1;
    } else {
      output_dims->data[i] = input_dims.data[i - 1];
    }
  }

If axis is a large negative value (e.g., -100000), then after the first if it would still be negative. The check following the if statement will pass and the for loop would read one element before the start of input_dims.data (when i = 0).

Patches

We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang of Baidu Security.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-37685"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-125"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-24T17:15:34Z",
    "nvd_published_at": "2021-08-12T23:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nTFLite\u0027s [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data:\n\n```cc\n  if (axis \u003c 0) { \n    axis = input_dims.size + 1 + axis;\n  }   \n  TF_LITE_ENSURE(context, axis \u003c= input_dims.size);\n\n  TfLiteIntArray* output_dims = TfLiteIntArrayCreate(input_dims.size + 1);\n  for (int i = 0; i \u003c output_dims-\u003esize; ++i) {\n    if (i \u003c axis) {\n      output_dims-\u003edata[i] = input_dims.data[i];\n    } else if (i == axis) {\n      output_dims-\u003edata[i] = 1;\n    } else {\n      output_dims-\u003edata[i] = input_dims.data[i - 1];\n    }\n  }\n```\n\nIf `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`).\n\n### Patches\nWe have patched the issue in GitHub commit [d94ffe08a65400f898241c0374e9edc6fa8ed257](https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257).\n\nThe fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang of Baidu Security.",
  "id": "GHSA-c545-c4f9-rf6v",
  "modified": "2024-11-13T21:18:37Z",
  "published": "2021-08-25T14:40:09Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c545-c4f9-rf6v"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-37685"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-598.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-796.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-307.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap OOB in TFLite"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…