GHSA-MQ5C-PRH3-3F3H

Vulnerability from github – Published: 2021-05-21 14:28 – Updated: 2024-11-13 16:23
VLAI?
Summary
Invalid validation in `QuantizeAndDequantizeV2`
Details

Impact

The validation in tf.raw_ops.QuantizeAndDequantizeV2 allows invalid values for axis argument:

import tensorflow as tf

input_tensor = tf.constant([0.0], shape=[1], dtype=float)
input_min = tf.constant(-10.0)
input_max = tf.constant(-10.0)

tf.raw_ops.QuantizeAndDequantizeV2(
  input=input_tensor, input_min=input_min, input_max=input_max,
  signed_input=False, num_bits=1, range_given=False, round_mode='HALF_TO_EVEN',
  narrow_range=False, axis=-2)

The validation uses || to mix two different conditions:

OP_REQUIRES(ctx,
  (axis_ == -1 || axis_ < input.shape().dims()),
  errors::InvalidArgument(...));

If axis_ < -1 the condition in OP_REQUIRES will still be true, but this value of axis_ results in heap underflow. This allows attackers to read/write to other data on the heap.

Patches

We have patched the issue in GitHub commit c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29610"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-665",
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-17T22:05:10Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nThe validation in `tf.raw_ops.QuantizeAndDequantizeV2` allows invalid values for `axis` argument:\n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([0.0], shape=[1], dtype=float)\ninput_min = tf.constant(-10.0)\ninput_max = tf.constant(-10.0)\n\ntf.raw_ops.QuantizeAndDequantizeV2(\n  input=input_tensor, input_min=input_min, input_max=input_max,\n  signed_input=False, num_bits=1, range_given=False, round_mode=\u0027HALF_TO_EVEN\u0027,\n  narrow_range=False, axis=-2)\n``` \n\nThe [validation](https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L74-L77) uses `||` to mix two different conditions:\n\n```cc\nOP_REQUIRES(ctx,\n  (axis_ == -1 || axis_ \u003c input.shape().dims()),\n  errors::InvalidArgument(...));\n```\n\nIf `axis_ \u003c -1` the condition in `OP_REQUIRES` will still be true, but this value of `axis_` results in heap underflow. This allows attackers to read/write to other data on the heap.\n\n### Patches\nWe have patched the issue in GitHub commit [c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9](https://github.com/tensorflow/tensorflow/commit/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.",
  "id": "GHSA-mq5c-prh3-3f3h",
  "modified": "2024-11-13T16:23:17Z",
  "published": "2021-05-21T14:28:32Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mq5c-prh3-3f3h"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29610"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-538.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-736.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-247.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:L/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Invalid validation in `QuantizeAndDequantizeV2`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…