GHSA-Q263-FVXM-M5MW

Vulnerability from github – Published: 2020-12-10 19:07 – Updated: 2024-10-30 21:25
VLAI?
Summary
Heap out of bounds access in MakeEdge in TensorFlow
Details

Impact

Under certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The MakeEdge function creates an edge between one output tensor of the src node (given by output_index) and the input slot of the dst node (given by input_index). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding DataType values and comparing these for equality:

  DataType src_out = src->output_type(output_index);
  DataType dst_in = dst->input_type(input_index);
  //...

However, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays.

In most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library.

Patches

We have patched the issue in GitHub commit 0cc38aaa4064fd9e79101994ce9872c6d91f816b and will release TensorFlow 2.4.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.

Since this issue also impacts TF versions before 2.4, we will patch all releases between 1.15 and 2.3 inclusive.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.5"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.5"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.5"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2020-26271"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-125",
      "CWE-908"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2020-12-10T19:06:50Z",
    "nvd_published_at": null,
    "severity": "MODERATE"
  },
  "details": "### Impact\nUnder certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The [`MakeEdge` function](https://github.com/tensorflow/tensorflow/blob/3616708cb866365301d8e67b43b32b46d94b08a0/tensorflow/core/common_runtime/graph_constructor.cc#L1426-L1438) creates an edge between one output tensor of the `src` node (given by `output_index`) and the input slot of the `dst` node (given by `input_index`). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding `DataType` values and comparing these for equality:\n\n```cc\n  DataType src_out = src-\u003eoutput_type(output_index);\n  DataType dst_in = dst-\u003einput_type(input_index);\n  //...\n```\n\nHowever, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays.\n\nIn most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library.\n\n### Patches\nWe have patched the issue in GitHub commit [0cc38aaa4064fd9e79101994ce9872c6d91f816b](https://github.com/tensorflow/tensorflow/commit/0cc38aaa4064fd9e79101994ce9872c6d91f816b) and will release TensorFlow 2.4.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.\n\nSince this issue also impacts TF versions before 2.4, we will patch all releases between 1.15 and 2.3 inclusive.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.",
  "id": "GHSA-q263-fvxm-m5mw",
  "modified": "2024-10-30T21:25:05Z",
  "published": "2020-12-10T19:07:34Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q263-fvxm-m5mw"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2020-26271"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/0cc38aaa4064fd9e79101994ce9872c6d91f816b"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-302.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-337.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-257.yaml"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:N/VI:L/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap out of bounds access in MakeEdge in TensorFlow"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…