PYSEC-2025-43
Vulnerability from pysec - Published: 2025-05-29 17:15 - Updated: 2025-05-29 19:21
VLAI?
Details
vLLM is an inference and serving engine for large language models (LLMs). In versions starting from 0.7.0 to before 0.9.0, in the file vllm/multimodal/hasher.py, the MultiModalHasher class has a security and data integrity issue in its image hashing method. Currently, it serializes PIL.Image.Image objects using only obj.tobytes(), which returns only the raw pixel data, without including metadata such as the image’s shape (width, height, mode). As a result, two images of different sizes (e.g., 30x100 and 100x30) with the same pixel byte sequence could generate the same hash value. This may lead to hash collisions, incorrect cache hits, and even data leakage or security risks. This issue has been patched in version 0.9.0.
Impacted products
| Name | purl | vllm | pkg:pypi/vllm |
|---|
Aliases
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "vllm",
"purl": "pkg:pypi/vllm"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "99404f53c72965b41558aceb1bc2380875f5d848"
}
],
"repo": "https://github.com/vllm-project/vllm",
"type": "GIT"
},
{
"events": [
{
"introduced": "0"
},
{
"fixed": "0.9.0"
}
],
"type": "ECOSYSTEM"
}
],
"versions": [
"0.0.1",
"0.1.0",
"0.1.1",
"0.1.2",
"0.1.3",
"0.1.4",
"0.1.5",
"0.1.6",
"0.1.7",
"0.2.0",
"0.2.1",
"0.2.1.post1",
"0.2.2",
"0.2.3",
"0.2.4",
"0.2.5",
"0.2.6",
"0.2.7",
"0.3.0",
"0.3.1",
"0.3.2",
"0.3.3",
"0.4.0",
"0.4.0.post1",
"0.4.1",
"0.4.2",
"0.4.3",
"0.5.0",
"0.5.0.post1",
"0.5.1",
"0.5.2",
"0.5.3",
"0.5.3.post1",
"0.5.4",
"0.5.5",
"0.6.0",
"0.6.1",
"0.6.1.post1",
"0.6.1.post2",
"0.6.2",
"0.6.3",
"0.6.3.post1",
"0.6.4",
"0.6.4.post1",
"0.6.5",
"0.6.6",
"0.6.6.post1",
"0.7.0",
"0.7.1",
"0.7.2",
"0.7.3",
"0.8.0",
"0.8.1",
"0.8.2",
"0.8.3",
"0.8.4",
"0.8.5",
"0.8.5.post1"
]
}
],
"aliases": [
"CVE-2025-46722",
"GHSA-c65p-x677-fgj6"
],
"details": "vLLM is an inference and serving engine for large language models (LLMs). In versions starting from 0.7.0 to before 0.9.0, in the file vllm/multimodal/hasher.py, the MultiModalHasher class has a security and data integrity issue in its image hashing method. Currently, it serializes PIL.Image.Image objects using only obj.tobytes(), which returns only the raw pixel data, without including metadata such as the image\u2019s shape (width, height, mode). As a result, two images of different sizes (e.g., 30x100 and 100x30) with the same pixel byte sequence could generate the same hash value. This may lead to hash collisions, incorrect cache hits, and even data leakage or security risks. This issue has been patched in version 0.9.0.",
"id": "PYSEC-2025-43",
"modified": "2025-05-29T19:21:01.611587+00:00",
"published": "2025-05-29T17:15:21+00:00",
"references": [
{
"type": "ADVISORY",
"url": "https://github.com/vllm-project/vllm/security/advisories/GHSA-c65p-x677-fgj6"
},
{
"type": "FIX",
"url": "https://github.com/vllm-project/vllm/commit/99404f53c72965b41558aceb1bc2380875f5d848"
},
{
"type": "WEB",
"url": "https://github.com/vllm-project/vllm/pull/17378"
}
]
}
Loading…
Loading…
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.
Loading…
Loading…